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1. INTRODUCTION

One of the primary tasks in the present effort was the use of

the S-CUBED plastic-flow code to calculate for typical metal-matrix
composites the residual microscopic stresses which would result from
given fabrication and/or processing cycles. Such calculations have
been done for grdphite/aluminum, tungsten/aluminum and silicon-

carbide/aluminum unidirectionally rein irced fibrous composites. In
particular, a rather extensive series of parametric calculations was

performed for the graphite/aluminum case to determine the changes in
the aluminum matrix residual stresses which would result from Vari-

acions and/or uncertainties in the thermoelastic properties of the
graphite fibers.

The S-CUBED plastic-flow code, which uses the concentric-

cylinder approximation for unidirectional composites, is described
in detail in Ref. 1. Briefly, the equations of elastic-plastic flow

are integrated numerically as the composite is cooled from an
initial stress-free state and then reheated. The fibers are assumed

to remain perfectly elastic throughout the cooling and heating
cycle, and tney may be treated as being anisotropic-transversely

isotropic. The matrix material is assumed to be isotropic and is
allowed to undergo plastic flow when its stress state reaches the
yield surface. The magnitude of the yield stress may depend both on

the temperature and the degree of plastic flow.

Results of the parametric study of a graphite/aluminum-2024
composite are given in Section 2, where stress-temperature histories
are given for the axial stress, hoop stress, and fiber-matrix inter-

facial radial stress. The temperature cycle used for these calcu-

lations is a cooling from a consolidation temperature of 930°F to a
minimum temperature of -240°F and then reheating until the aluminum
matrix again reaches the yield surface. Results are given both for

the TO temper (slow cooling) and the T4 temper (rapid quench)
thermoelastic properties and yield strength models used for 6061 and
2OZ4 aluminums are detailed in Appendix A.
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Results of two calculations on a tungsten/aluminum composite

are given in Section 3, and similar calculations on a silicon

carbide/aluminum composite are described in Section 4.

In Section 5, a computational method is presented for deter-

mining the elastic moduli and thermal expansion characteristics of

cross-plied laminates from the properties of the individual uni-

directionally reinforced composite plies. Calculated results as a

function of lay-up angle are given for a laminate made up of

graphite/aluminum layers. A computer code has been constructed for

treating a laminate with plies in up to three different directions.

The properties of the individual plies may be calculated directly

from the fiber and matrix properties if desired. The code also

provides values for the intra-ply thermal stress derivatives about

an initial stress-free state. A FORTRAN listing of the code is

given in Appendix B.

A consideration of numerical results from a finite-element

code calculation as given in a recent report by Hashin and Humpnreys

(Ref. 2) has led to a revision of the PRUFC code. This code was

recently developed at S-CUBED for calculating the properties of

unidirectional fibrous composites from those of the constituents

(Ref. 3). In Section 6, various ways of obtaining the transverse

properties of a composite within the context of the concentric-

cylinder approximation used in the PRUFC code are examined and

compared with the results of a more nearly exact (but much more

expensive to run) finite-element code computation. A comparison of

residual stresses calculated with the S-CUBED plastic-flow code

(concentric-cylinder approximation) with those obtained from the

finite-element method is also given in Section 6. The agreement is

quite good.

In Section 7, a two-dimensional Fourier-series solution is

presented for the stresses and thermal deformations in an elastic

plate subjected to an arbitrary transverse temperature distribution.

A summary and some general conclusions are offered in

Section 8.
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2. GRAPHITE/ALUMINUM PARAMETER STUDY

A series of calculations was performed to detenine the

sensitivity of the matrix residual stresses to variations in various

fiber properties. Eignteen different sets of graphite fiber pro-

perties were used. For each set of fiber properties, results were

obtained for a slow cooling (TO temper) and a rapid quench (T4

temper) of the 2024 aluminum matrix from an initial consolidation

temperature of 930°F to a minimum temperature of -240 0 F. The fiber

pro;erties are taoulated in Table 2.1, and the thermoelastic pro-

pert)v.s and yield-stress models used for tile 2024 aluminum are

suraaidrized in Appendix A. The room temperature thermoelastic

properties of the composite as calculated witn the latest version of

the PRUFC code (Section 6) for each set of fiber properties are

given in Table 2.2, the values being appropriate to the case where

the aluminum matrix is not on its yield surface.

2.1 CALOULATIONAL RESULTS

Plots of tie volume-averaged (matrix) axial stress, volume-

averaged hoop stress, and the radial stress at the fiber-matrix

interface as a function of temperature are given as Figures 2.1

tnrough 2.42. The temperature cycle is a reheating from -240°F

after a slow (TO) or fast (T4) cooldown from an initial consoli-

dation temperature of 930 0F. For this high initial temperature, the

matrix is completely yielded after only a few degrees (<30°F) of

cooling, and ne changes in the stress state upon further cooling

are due primarily tO the variation of yield strengthi with tempti-

ature and plastic flow. Upon reheating from -240°F, however, the

matrix immediately drops below tile yield surface; and the variation

in stress with temperature is then governed by the (reversible)

equations of tnermoelasticity. As tile reheating continues, the

matrix will eventually again reach its yield surface, as indicated

py tne open circles on the reheating curves. The plots are

3
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terminated at this point due to the limitations of the present

yE .ion of tne S-CUBED plastic-flow code. Physically, if the

reheating were continued beyond the yield point, the slope of the

stress-temperature curves would exhibit a discontinuous sharp

decrease in absolute magnitude with a subsequent return to zero

stress at the melt point. As long as tne temperature at tne upper

yield point is not exceeded, subsequent cooling will cause the

stresses to retrace the original heating path from -240 0 F. (The

possible effect of creep on the matrix residual stresses is not

treated here.)

The effect on the matrix stress of a variation of tne axial

coefficient of thermal expansion for the fibers is shown in Figures

2.1 through 2.6. Neither the axial, hoop, nor interfacial radial

stress s,ows a marked variation for the range az = 0.5 x 10- 6

°F - i  to :z = - 1.5 x 10- 6 0F 1  for the fiber expansion coef-

ficient. The reversiule, elastic portion of the axial stress shows

the greatest dependency.

Tne effect of a variation in the fibers transverse coefficient

of thermal expansion on the matrix stresses is depicted in Figures

2.7 tnrough 2.12. The axial stress does not exhibit a strong depen-

dency, but the hoop and interfacial radial stresses show a marked

variation. Perhaps it is not surprising that as the fiber's trans-

verse expansion coefficient approaches that of the matrix, the hoop

and radial residual stresses become small. Here it should be

pointed out that a negative (compressive) interfacial radial stress

would increase the effective fiber-matrix bond strength; hence a

moderately large negative value might be desirable.

A variation of tne fiber's Poisson's ratios, as shown in

Figures 2.13 tnrough 2.18, has only a minute effect on all three of

the calculated stress-temperature histories.

An increase in the fiber's axial elastic modulus from 50 Msi

to 100 H4si, Figures 2.19 through 2.24, does produce a more rapid

decrease in the matrix axial stress upon reheating from -240°F but

6



has a completely negligiole effect on the hoop and interfacial

radial stress-temperature histories.

A parametric variation in the transverse elastic modulus of

the fibers leads to the calculated results for the matrix stresses

plotted in Figures 2.25 througn 2.30. Doubling the fiber modulus

from 1 Msi to 2 Msi has d negligible effect on the axial matrix

stresses, and the effect on the calculated hoop and interfacial

radial stresses is also small.

For tne calculations discussed above, the fiber volume frac-

tion in all cases is nf = 0.45. In Figures 2.31 through 2.36,

results are plotted for a fiber volume fraction of nf = 0.37 for

two values of the fiber's transverse thermal expansion coefficient.

As was the case with Calculations 2, 4 and 6, the larger value of

tne transverse expansion coefficient produces a significant decrease

in tne magnitudes of the hoop stresses and interfacial radial

stresses.

Results for two different fiber volume fractions of nf =

0.30 and nf = 0.60 are plotted in Figures 2.37 through 2.42. The

residual stresses are somewhat higher in magnitude for the larger

volume fraction.

2.2 SUMMARY AND CONCLUSIONS

In general, for all of the fiber parameter variations dis-

cussed aoove, the calculations indicate that the axial matrix stress

at room temperature after a rapid quencn from 930°F to -240°F (T4

temper) will lie in the range from about 30 ksi to 40 ksi (tensile)

and tnat tie matrix will remain elastic up to about 600°F upon

reheating. The residual hoop stress at room temperature in all

cases is tensile and ranges from about 10 ksi to 20 ksi in magnitude

if the fiber's transverse coefficient of thermal expansion is taken

to be less than or equal to that of the matrix (-12.4 x 10- 6 F 1

for 20e4 aluminum at room temperature). Further, the interfacial

7



radial stress between the fiber and matrix is compressive as long as

the fiDer's transverse expansion coefficient does not exceed tnat of

the matrix, the magnitude ranging from about 2 ksi to 10 ksi over

tne range of material paraineters used in these calculations. This

would appear to be a significant result, since a compressive inter-

facial stress is desirable as an aid in maintaining the integrity of

the fiber-matrix bond. This oond is critical, since it is the

source of the (localized) snear forces which are ultimately respon-

siole for equilibrating axial strain between the fiber and matrix

components.

For tne slow cool to -240OF (Tv temper) the axial residual

stresses at room temperature for all cases considered here are very

close to zero, a situation wnich would appear to be desiraole if the

composite is to be subjected to subsequent mechanical loading.

Because of tne reduced yield strength of the TO temper with respect

to that of the T4, however, tie matrix will again reach its yield

point after reneating to between 200°F and 3J0 F. Even tilough the

axial stress at room temperature is much lower for the TO temper

than the T4, the hoop stress will still De about 5 ksi to 10 Ksi in

tension for the range of fiber parameters considered. As long as

ae fiber's transverse expansion coefficient is less than tnat of

the matrix, the interfacial radial stresses would still be

compressive according to the calculations, the magnitudes being in

the range from 2 ksi to about 8 ksi.

A room temperature axial residual stress of 30 ksi to 40 ksi

in the matrix as calculated for the T4 temper would be undesirable

if toe composite were to be subjected to large tensile loads. This

is due to the fact that the matrix would reach the yield surface,

witn a cunsequent degradation of the axial modulus, at a lower

applied load tnan it would if the matrix stress were initially near

zero. For compressive loads about the ambient state, however, an

initial tensile residual stress might be useful. In any case, it is

not i mediately apparent how the room temperature residual stress

for the T4 temper might be reduced. Continued heating beyond the

... . .... ..... ..... . .. . . . . n = .,., ,..=,



yield point of -6JO°F would result in a stress temperature path that

must ultimately pass through zero stress at the melt point. A

recooling from any point on this path segment would result in a

(reversible) elastic curve for the axial stress that would lie to

the right of the initial heating curve from -240°F, and consequently

the room temperature axial residual stress would be higher than it

Wds before. This might oe alleviated however, if creep of the

matrix material Wds taken into account.

Some reduction of the axial residual stress would be achieved

oy couling below -Z40OF initially. No explicit calculation was

done, but it appears from an extrapolation of the curves presented

nere that cooling to ~-J20 0 F (liquid nitrogen) would reduce tne

axial residual stress by about 5 ksi or 10 ksi.
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Figure 2.1. Volume-averaged axial stress versus temperature for

the matrix of a graphite/aluminum composite (rapid
cooling).
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Figure 2.2. Volume-averaged axial stress versus temperature for
the matrix of a graphite/aluminum composite (slow
cooling).
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Figure 2.3. Volume-averaged hoop stress versus temperature for the
matrix of a graphite/aluminum composite (rapid coolinq).
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Figure 2.4. Volume-averaged hoop stress versus temperature for

the matrix of a graphite/aluminum composite (slow
cooling).
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Figure 2.5. Radial stress versus temperature at the fiber-matrix

interface of a graphite/aluminum composite (rapid
cooling).
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Figure 2.6. Radial stress versus temperature at the fiber-matrix

interface of a graphite/aluminum composite (slow
cooling).
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Figure 2.7. Volume-averaged axial stress versus temperature for the

matrix of a graphite/aluminum composite (rapid
cooling).
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Figure 2.9. Volume-averaged hoop stress versus temperature for
the matrix of a graphite/aluminum composite (rapid
cooling).
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Figure 2.10. Volume-averaged hoop stress versus temperature for

the matrix of a graphite/aluminum composite (slow
cooling).
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Figure 2.11. Radial stress versus temperature at the fiber-matrix
interface of a graphite/aluminum composite (rapid
cool i ng).
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Figure 2.12. Radial stress versus temperature at the fiber-matrix
interface of a graphite/aluminum composite (slow
cool ing).
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Figure 2.13. Volume-averaged axial stress versus temperature for the

matrix of a graphite/aluminum composite (rapid
cooling).
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Figure 2.14. Volume-averaged axial stress versus temperature for the
matrix of a graphite/aluminum composite (slow coolinq).
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Figure 2.15. Volume-averaged hoop stress versus temperature fhr the

matrix of a graphite/aluminum composite (rapid
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Figure 2.16. Volume-avcraqed hoop stress versus temperature for the
matrix of a graphite/aluminum composite (slow
cool ing).
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Figure 2.18. Radial stress versus temperature at the fiber-matrix
interface of a graphite/aluminum coanoosite (slow
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Figure 2.19. Volume-averaged axial stress versus temperature for
the matrix of a graphite/aluminum composite
(rapid cooling).
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Figure 2.20. Volume-averaged axial stress versus temperature
for the matrix of a graphite/aluminum composite
(slow cooling).
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Figure 2.21. Volume-averaged hoop stress versus temperature for

the matrix of a graphite/aluminum composite (rapid
cooling).
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Figure 2.22. Volume-averaged hoop stress versus temperature for
the matrix of a graphite/aluminum composite
(slow cooling).
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Figure 2.23. Radial stress'versus temperature at the fiber-matrix
interface of a graphite/aluminum composite
(rapid cooling).
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Figure 2.24. Radial stress versus temperature at the fiber-matrix

interface of a graphite/aluminum composite
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Figure 2.25. Volume-averaged axial stress versus temperature for the

matrix of a graphite/aluminum composite (rapid cooling).
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Figure 2.26. Volume-averaged axial stress versus temperature for
the matrix of a graphite/aluminum composite (rapid
cooling).
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Figure 2.27. Volume-averaged hoop stress versus temperature for the

matrix of a graphite/aluminum composite (rapid
cooling).
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Figure 2.29. Radial stress versus temperature at the fiber-matrix

interface of a graphite/aluminum composite (rapid
cooling).
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Figure 2.30. Radial stress versus temperature at the fiber-matrix

interface of a graphite/aluminum compositp (slow
cooling).
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Figure 2.31. Volume-averaged axial stress versus temperature for the

matrix of a graphite/aluminum composite (rapid coolina).
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Figure 2.32. Volume-averaged axial stress versus temperature for
the matrix of a graphite/aluminum composite (slow
cooling).
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Figure 2.33. Volume-averaged hoop stress versus temperature for the

matrix of a graphite/aluminum composite (rapid cooling).
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Figure 2.34. Volume-averaged hoop Stress versus temperature for the

matrix of a graphite/aluminum composite (slow cooling).
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Figure 2.35. Radial stress versus temperature at the fiber-matrix
interface of a graphite/aluminum composite (rapid
cooling).
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Figure 2.36. Radial stress versus temperature at the fiber-matrix
interface of a graphite/aluminum composite (slow
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Figure 2.37. Volume-averaged axial stress versus temperature for the
matrix of a graphite/aluminum composite (rapid cooling).
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Figure 2.38. Volume-averaged axial stress versus temperature for the
matrix of a araphite/aluminum composite (slow cooling).
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Figure 2.39. Volume-averaged hoop stress versus temperature for the
matrix of a graphite/aluminum composite (rapid cooling).
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Figure 2.40. Volume-averaged hoop stress versus temperature for the

matrix of a graphite/aluminum composite (slow cooling).
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Figure 2.41. Radial stress versus temperature at the fiber-matrix
interface of a graphite/aluminum composite (rapid
cooling).
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3. TUNGSTEN/ALUMINUM RESIDUAL STRESSES

Calculated axial and hoop stresses (volume averaged) in the

aluminum matrix are given in Figures 3.1 and 3.2 for a composite

whicn is 45 percent by volume of tungsten fibers and in Figures 3.3

and 3.4 for a 55 percent fiber loading. The temperature cycle is a

cooling from a consolidation temperature of 930°F to a minimum

temperature of -240 F followed by a reheating. The open circles on

the reneating curves mark the temperature at %hich the stress state

in tne matrix again reaches the yield surface. As was the case for

tie graphite/alwminum calculations in Section 2, the mdtrix reaches

the yield surface after only a few degrees of cooling ( 50°F) from

the initial value of 930°F. The subsequent increase in stress is

due to the temperature and plastic-flow dependence of the yield

strength.

The material properties and yield-strength models for the 2024

aluminum are given in Appendix A. The tungsten fibers are assumed

to be elastic over tne entire temperature range, the following

values being used for the tungsten's elastic modulus, Poisson's

ratio and linear coefficient of thermal expansion:

E 59 Msi

v= 0.28

C= 2.5 x 1J -6 in/in/°F

Tne properties of the composite as calculated with the PRUFC code

are given in Table 3.1 below.
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TABLE 3.1 CALCULATED THERMOELASTIC PROPERTIES

OF A TUNGSTEN/AL2024 COMPOSITE

nf 0.45 0.55

Ex(,vsi) 17.74 20.69

Ez(Msi) 32.33 37.18

" 0.434 0.428

" 0.305 0.300

z (10-60 F- ) 8.48 7.34

CLZ(10 - F- ) 4.34 3.82

G (Msi) 6.19 7.24xy
G (Msi) 7.63 8.98

For the TO temper (slow cooling from 930°F) the residual axial

and hoop stresses are close to zero after reheating to room tempera-

ture from -240 0F. Because of the low yield strength, however, the

matrix will again reach the yield surface at about 1500F. For the

T4 temper (rapid quench), the higher yield strength allows the

matrix to remain elastic up to about 500°F. The high value of the

axial residual stress at room temperature, however, would be

undesirable if the composite is to be subjected to large tensile

1 odds.
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Figure 3.1. Volume-averaged axial and hoop stresses versus
temperature for the matrix of a tungsten/aluminum
composite (rapid cooling).
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Figure 3.2. Volume-averaged axial and hoop stresses versus
temperature for the matrix of a tungsten/aluminum
composite (slow cooling).
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Figure 3.3. Volume-averaged axial and hoop stresses versus
temperature for the matrix of a tungsten/alumitium
composite (ranid cooling).
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Figure 3.4. Volume-averaged axial and hoop stresses versus
temperature for the matrix of a tungsten/aluminum
composite (slow cooling).
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4. SILICON CARBIDE/ALUMINUM RESIDUAL STRESSES

Several calculations have been done to determine the magni-

tudes of the residual stresses to be expected in a SiC/Al composite

as a result of cooling from the consolidation to ambient tempera-

ture. The effect of these stresses on the elastic properties of

unidirectional panels and cross-plied laminates is also considered.

The results of this section have been submitted previously as an

Interim Progress Report to the Naval Research Laboratory (Ref.4).

4.1 FIBER PROPERTIES

For bulk SiC, whicn we assume to be isotropic, the elastic

(Young's) modulus and shear modulus were taken as (Ref. 5):

E = 68 Msi

a = 27 Msi

Tne coefficient of tiermal expansion was assumed to be

= 2.42 x 10- 6 in/in/F -I

which, from Ref 5, is appropriate for the temperature range con-

sidered here.

The SiC fibers, however, are not completely bulk material, but

apparently contain a core of essentially zero strength material

(carbon) whose diameter is about 1.3 x 10- 3 in. as compared with

an outer fiber diameter of about 5.6 x 10'3 in. The volume

fraction of the carDon core is thus 0.054. The overall properties

of a fiber were determined with the ?RUFC Code (Ref. 3), in which

the sheatn of the concentric cylinder model was assigned properties

appropriate to the bulk SiC, and the core was assigned elastic

moduli a factor of 10 -3 smaller (hollow cylinder approximation).

The resulting calculated properties of the fiber, which now becomes

anisotropic-transversely isotropic, are:
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EA = 64.33 Msi

ET = 60.56 Msi

VTT = 0.2400

VTA = 0.2600

GAT = 24.25 Msi

LA =QT = 2.42 x 10- 6 F -

where the Poisson's ratio vTT refers to the transverse contraction

for an applied transverse stress, and vTA refers to the transverse

contraction for an applied axial stress. As expected, because of
the small volume fraction of the core, the net fiber properties

differ only slightly from those of the bulk SiC.

The material properties and yield-strength models for the

aluminum 6061 matrix are given in Appendix A.

4.2 RESIQUAL STRESS RESULTS

Average axial stresses in the aluminum matrix of a SiC/Al

composite are shown in Figure 4.1. Results are given for fiber
volume fractions of 0.35 and 0.50 and for both the TO and T4

aluminum tempers. The assumed thermal cycle process is a cooling

from an initially stress-free state at 700°F to room temperature and

then reheating.

As mentioned previously, the code uses a concentric-cylinder

approximation to model the composite. For initial cooling from the

stress-free state, both the inner cylinder (fiber) and the outer

(matrix) are elastic. As cooling continues, the matrix material

will in general reach its yield point, after which the Reuss

equations for plastic flow (see, for example, Ref. 6) are integrated

numerically to determine the distribution of stress in the outer

(matrix) cylinder. In the code's present form the fiber is treated

!s 1i-arly elastic over the entire temperature range.
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For the cases depicted in Figure 4.1, about 20 degrees or less

of cooling from the initial temperature of 700°F is sufficient to

bring the aluminum matrix to its yield surface. The additional

increase in axial stress for further cooling results from two

causes: the increase of the matrix yield stress itself as a func-
tion of decreasing temperature, and a further increase due to

plastic-flow work hardening. At the lowest temperature (70°F) the

axial stress is a maximum, and its magnitude depends strongly on the

effective temper of the aluminum. The calculation suggests that the
maximum residual stress due to rapid quencning (T4 temper) would be

over twice that of the slow-cooled or annealed state. If the com-

posite is reheated from room temperature, the matrix material will

fall off the yield surface, and as shown in Figure 4.1, the rate of
decrease of stress in the elastic regime will be quite rapid. For

the annealed case, a temperature increase of about 100°F would be

sufficient to reduce the residual stresses to approximately zero.

It is anticipated that A357 aluminum casting alloy will also
be used in the fabrication of these composites. No residual stress

calculations for this material have been done as yet iecause we have

been unable to locate yield strength information for the TO and T4

tempers. No large differences witn respect to the 6061 matrix are

expected however, since the yield strengtn of the A357 alloy in the

T6 temper is comparable to that of 6061-T6, and other mechanical

properties also are not significantly different.

4.3 ELASTIC PROPERTIES OF A UNIAXIALLY REINFORCED LAMINATE

Since tne coefficient of thermal expansion for the aluminum

matrix is greater than that of the SiC fibers, the residual stresses
in tne matrix after cool-down will be tensile in the axial direc-

tion. (The calculated hoop stresses in the concentric cylinder

model are also tensile, but the radial stress is compressive, so

that there should be little tendency for deDonding to occur between

tne matrix and fibers.) If the composite is not subjected to an
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overall tensile axial stress, the matrix will remain on the yield

surface and the effective axial elastic modulus will be lower than

it would be in the absence of residual stresses.

The plastic-flow code as described in Ref. 1 has been

augmented so that it is now possible to calculate the stresses as a

function of axial strain following the cool-down procedure. The

calculated overall axial stress as a function of axial strain at

70°F is plotted in Figure 4.2 for tne 6061-TO yield model after

cooling from 70J°F. Also shown is the straight-line stress-strain

curve for an elastic matrix as calculated with the PRUFC code, and

an experimental stress-strain curve obtained from AVCO (Ref. 7), the
volume fraction of fibers in this case being 0.45. The experimental

curve changes slope at about 90 ksi, and the slope of the higher-
stress segment is in good agreement with that of the curve corre-
sponding to the yielded matrix. The lower-stress portion of the

experimental curve however, is in agreement with the stress-strain

curve as calculated using an elastic matrix.

The overall axial stress for the composite is related to that

in the fibers and matrix by

Gz = nf zf + ! - nf)azm

For this material one has, to good approximation,

Ef

m zm

for tie fiber stress in terms of that in tne matrix, where Ef and

Em are the respective fiber and matrix axial elastic moduli. For

an elastic matrix of modulus Em = 10 Msi, and an overall composite

axial stress of 90 ksi, the matrix would experience a stress of 26
ksi, a value close to the nominal yield stress of 6061 aluminum in
the T4 temper. On tne other hand, if the oreak in the experimental
curve at 90 ksi is to be interpreted as the transition point from an
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elastic to a plastic matrix, then the initial state of the matrix

would have to be essentially stress-free, in marked disagreement

with the calculated axial residual stress as shown in Figure 4.1.

The slope of the calculated stress-strain curve corresponding

to a yielded matrix is 29.3 Msi, which is close to the value

nfEf = (0.45)(64.33) = 28.9 Msi ,

which one would expect for the composite elastic modulus if the

matrix modulus were zero. This result is to be expected, since at

the yield surface the effective modulus of the matrix is approxi-

mately equal to the local slope of the yield-strength versus strain

curve, which typically ranges from several hundred ksi to about 1

Msi (see Figures A.3 and A.4 of Appendix A). Since this slope for

either the TO or T4 temper is small as compared with the 64 Msi

modulus of the fiber, the choice of tempers has a negligible effect

on tie calculated value )f the effective axial modulus for the

composite if the matrix is indeed on the yield surface.

The concentric-cylinder approximation used in the S-CUBED

plastic-flow code does not lend itself to the calculation of the

transverse stress-strain relations if the matrix is on the yield

surface. From the PRUFC code, however, for an elastic matrix the

calculated transverse modulus for the composite is

ET = 17.1 Msi

for a fiber volume fraction of 0.45. The mixture result for a

simple series combination of tne fioer and matrix materials,

i 0.45 + 0.55
T 9 -TOT

gives the result
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E* = 16.0 Msi

quite close to the PRUFC result, so that the simple series conbina-

tion might be expected to give a useful approximation to the

transverse behavior, even if the matrix has yielded.

Note here that if the matrix material is at the yield surface

due to tne cool-down residual stresses, then the dominant residual

stress is tension in the axial direction. Consequently, an applied

transverse tension will pull the matrix off the yield surface and

the initial transverse behavior will be elastic. Under an applied

transverse compressive stress, the matrix would stay on the yield

surface and flow plastically, resulting in a lower apparent modulus

for the composite.

For the simple series combination, the overall strain is given

by

F = nf~f + (I - nf)m

in the transverse direction, or

o= n a + (1 - *f)Em(a)
f

The above relation was used to obtain the estimates for the 90

degree orientation composites as plotted in Figure 4.2.

4.4 LAMINATE PROPERTIES

The code constructed at S-CUBED (Appendix B) may be used to

compute the elastic properties of a laminate with plies oriented in

up to three different arbitrary directions. As input one may use

either the elastic and thermal properties of each type of ply, or

the volume fractions and individual properties of the fiber and

matrix components for each type of ply. In the latter case the code

computes the ply properties as per the method used in the PRUFO
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code. With the fiber and matrix properties as input, the code was

used to determine the elastic behavior of a 0°/900/900/0 ° laminate

with each ply consisting of a 0.45 fiber volume-fraction SiC/Al

composite. The resulting slope of the initial elastic segment is

indicated in Figure 4.3, both for an initial stress-free state and

for tne case where the matrix material is at the yield surface due

to cool-down residual stresses. Fcr the 90° plies, the initial

behavior, as discussed above, will be elastic even though the matrix

is initially on the yield surface. It turns out that for these

orientations, tne resulting elastic modulus of the composite

laminate is very nearly the same as that of a simple combination of

parallel springs. Thus, with equal volume fractions of the 0 ° and

90 ° plies, the laminate modulus corresponding to an elastic matrix is

(34.5 + 17.1)/2 = 25.8 Msi,

and for the yielded matrix it drops to

(29.3 + 17.1)12 = 23.2 Msi

as indicated in Figure 4.3. Eventually, the 90° plies, which had

initially dropped off the yield surface, will once again reach the

yield surface. Using an elastic-perfectly plastic model with a

yield stress of 21 ksi (T4 temper), this is found to occur at an

overdll stress of auout 28 ksi, at which point thie slope of tne

stress-strain curve will drop to about

29.3/2 = 14.6 ksi

The rtsulting stress-strain relationship agrees well with a

projected estimate from AVCO, as shown in Figure 4.3.
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5. THERMOELASTIC PROPERTIES OF CROSS-PLY LAMINATES

Computational machinery is presented for determining the

elastic moduli and thermal expansion characteristics of cross-plied

laminates from the properties of the individual unidirectionally

reinforced layers. Explicit formulas are given for the elastic

constants and thermal expansion coefficients for a laminate with

equal volume fractions of plies oriented in two directions. The

computer code (Appendix 8) in its present form may be used for plies

oriented in up to three different directions. The code also pro-

vides the stress-temperature derivatives within each type of ply,

appropriate to a uniform heating from an initial stress-free state.

5.1 TRANSFORMATION OF ELASTIC CONSTANTS

As a first step, it is necessary to obtain expressions for the

eldstic constants of a fiber-reinforced material in a coordinate

system rotated with respect to that defined by the direction of the

fibers. The stress-strain relotions for a fiber-reinforced material

assume the simplest form in the fiber coordinate system (FCS), i.e.,

tnat coordinate system in which one of the axes is in the direction

of the fibers. If we take the z-axis as being parallel to the

fibers, then tne stresses are given in terms of the strains by the

matrix relation

Sxxl Cli C12 C13 0 0 0 xx

ayy C 12 11 C 13 0 0 0 yy

Gzz 0 13 C13 C33  0 0 0 Ezz (5.1)

Uyz 0 0 0 2C44  0 0 £yz

xz 0 0 2C44 0 exz

rxy 0 0 0 0 0 2C66 xy
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xx = Clxx + 12cyy * C13zz (5.2)
=yz 2C 446yz , etc.,

where the strains are defined by

E ij = Z .ax ax' (5.3)
1 I (ui + uj

In what follows, the subscripts 1, 2, 3 will be used interchangeably

with x, y, z, respectively, to denote the coordinate axes. In the

usual case, where the material is not only orthotropic but also

transversely isotropic,

1 - C 2) . (5.4)"66 =' 7 (011li 12

For tne laminate analysis, we require the elastic constants of

the ply in the rotated coordinate system x'y'z' as shown in Figure

5.1, obtained by a positive rotation (9 > 0) about the x,x' axis,

which is perpendicular to the face of the ply. The elastic con-

stants Cpq are, of course, components of the fourtn rank tensor,

ijmn' which relates the stresses to the strains,

aij = Cijmnemn , (5.5)

using the summation convention m,n = 1,2,3 over repeated indices.

In general, the transformation to a new coordinate system is

given by

01 =, i z. C (5.6)pqkr pi qj km rn ijmn

where the Zij relate the components of a vector in the primed

coordinate system to those in the unprimed; and in the present case

(Figure 5.1), these quantities are given by the matrix
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Figure 5.1 Coordinate system x'y'z' used for laminate analy-sis.
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Z~ 12 91131 1 01
i D -2 123 = cose sine (5.7)

L 3l Z 32 Z 33._j -sine cose _j

In the FCS, the nonvanishing components of the tensor Cijkm

are given in terms of the elastic constants defined in Eq, (5.1) by

Cli = 1111 = C2222

12 = 01122 = C22 11

013 C 1133 C2233  C33 11 = C332 2

C =(5.8)C33 : 333,3,

C 4 4 = C232 3 = C233 2 = C322 3 = C3 232

= C1313 = C133 1 = C3113 = 03131

066 = C1212 = C1221 = C2112 C2 121

Thus, tne calculation of a typical component in the new coordinate

system requires the consideration of 21 terms. For example,

C 3 33 = '3131'31£31Cl111 +£ 3 2£ 3 2£ 3 2£ 3 2 C2 2 2 2

+ '31'-31 3'32zCIl + k3232-31'31 C2211  (59)

+ £3231£3 132C2112 + '32Z31'32'31C2121

Mdny of the terms are zero, however, because of the simple form of

the transformation matrix, Eq. (5.7).

The result is that the stresses and strains in the primed

coordinate system of Figure 5.1 are related by (note that the matrix

is not symmetric)
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21 0m 0

0 U~ 'i2 2 3 2C4 0 0

Cs3 2p2 1 0 0 e1 (5.10)1az 'i 3 33 z z

2 0 0eI
a~L: Cj4 024 034 2C 4 2Cy 2

a0 0 0 0 2'56 21

where the new elastic constants are given in terms of the old by

C12 = IC1 2cos e + C 13 sin 2

'i3 = C1 2 sin 2e + Cl3cos e (5.11)

Ci4 = - C12 sinecuse + C 1 3sinecose

Iz= C11cos 4e + C33 sin 4e + 2C13sin 2 cos 2

+ 4C 44 sin 2 ecos 2 e

C 3 = (Ill + 0 33) sin 2ecos 2e +C1 3 (sin 4 +Cos 4e)

- 4C 44 sin 2ecos ze

C 4 = - 1C11 sinecos 39 + 1 1 3 (sinecos 3 - sin 3ecose)

+CI33sin 3ecose + 2C44 (sinecos 3 - sin 3ecobe)

Ch3 = C,.4cos 40 C l 1sin 4e + 2Cl 3sin 2ecos 2

+ 4C44 sin 2ecos 2e

C 4 = - 1 1 1 sin 3 ecose + 1C3 3 sinecos3ea

C 113 (sin e cose -sinecos 3e)

2C44 (sin 3ecose -sinecos e )
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L'44 = + C33j sin 2ecos2e - 2C13sin 2ecos 2e

+ C44 (cos
2e - sin2e) 2

Co.-= C44cos2e + C66 sin 2e

'56 = ( 44 - C66) sinecose

C66 Cos20 + C44 sin 2e

The above results have been checked against those given by

Hasnin [8 j for an initial coordinate system in wnich the fibers are

parallel to the x-axis.

The description in the primed coordinate system is completed

oy a consideration of the thermal stress parameters. In the fiber
coordinate system the thermal stresses are given by

(T) (T)Txx = yy - Y1AT (5.12)
(T) ( .-" zz = -y 3AT

where AT is the temperature increment, and the stress-temperature

coupling coefficients are given in terms of the linear coefficients
of thermal expansion by

YI= (C + C12 )ax + Cl3az (5.13)

Y3= 2CI1 x + C33 z

The nonvunishing components of tnis second rank tensor in the

primed coordindte system dre

Yi1 = Yi

Y 2 = y1cos2e + Y3 sin 2e
Y 3 = Y1s i n 2 + Y3COs 2  (5.14)

Y23 = Y32 = (Y3 - Y1 ) sinecose
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In summary, the stresses are given in terms of the strains in

tile rotated, or laminate coordinate systein (LCS), by

o11 = 1161 + C1262 2 + C13c33 + 2C14 c23 - YIIAT

22 = C12c11 + C22622 + C2 3 33 + 2C24c23 - Y2 2AT

G33 = 1ii + C23F22 + C33 "3 3 + 2C34 c23 - Y33AT

G23 = C14611 + C24c22 + C34633 + 2C44c23 - Y23AT

a13 =2C5513 + 2C56612 (5.15)

"12 = 2C56F13 + 2C66c12  ,

w~iere, for convenience, the primes have been omitted. If we

consider the stresses as a six component column matrix, then the

above relations can be written in matrix form as

a = Cc - y AT , (5.16)

and tne inverse relations giving the strains in terms of the

stresses are

c= C-Ia + C-y AT

or equivalently as

6 = So + a AT , (5.18)

i.e.,

611 = $11011 + $12"22 + S13033 + 2S14"23 + 'l AT

622 = $12011 + $22a22 + S23"33 + 2S24 a23 + a22
AT

c33 = S1301 + $23a22 + $33o33 + 2S3402 3 + c33 AT (5.19)

623 = S14o11 + $24"22 + $34033 + 2S44 G2 3 + a2 3AT

613 = 2S55013 + 2S56"12

612 = 2S560 13 + 2S66a12

75



where the inverse S of the matrix C is easily obtained using the

computer (note again that the matrix S and the matrix C are not

symmetric wnen the strains dre defined by Eq. (5.3)).

5.2 THERMAL EXPANSION COEFFICIENTS

Here we shall oe concerned with the thermal expansion coef-

ficients of a laminate containing equal volume fractions of plies

with fibers oriented in one or the other of two directions. The

z-axis of the lamindte coordinate system is taken as the bisector of

the angle between the fiber directions, as indicated in Figure 5.2.

The elastic constants in the LCS of a ply with fibers in the

zI direction are given directly by the relations (5.11); and the

elastic constants of a ply with fibers along z2 may be obtained

from the connections (5.11) by replacing sine by - sine, i.e.,

_(2) = -

u14 14

_(2) = 1(520
%&24 24(.0

(2) (1)
C 34 = 34

"56 = 56

(2) (1)
YZJ =-Y23

(W) (1)
Q23 = 23

all the other parameters being equal. If the laminate thickness

(x-direction) is very much less than the lateral dimensions (y,z

directions), then away from the edges the shear stresses between

plies will vanish, and the appropriate boundary conditions for

determining the tnermal expansion coefficients are
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Figure 5.2. Laminate geometry.
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(1) (2) = 0 (5.21)
xx xx

() (2) (5.22)
zz zz

(1) (2) (5.23)
yy = 'yy

(1) (,) (5.24)
yz = eyz

and (equal volume fractions),

(1) + (2) = 0 (5.25)

a(1) + (2) = 0 (5.26)Oyy Oyy

(1) + (2) = 0 (5.27)
yz y z

The conditions (5.22), (5.23), and (5.24) give the three

equations,

(5() + S (1) + (SU) + S(2)) (l)

233 33 ZZ

(5.28)

+ 2(si) + (2)) (1) + -(33 (2) = 0
34 34 yz - 33

(S(1 + (2) G(1) + ( (1) + ,(2 ) (1)
22 S22  yy 23 +23 zz

+ Z(S2 + S(2) (1) + (1) _ AT : 0 (5.29)
24 2 0yz 22 ~22

(S () + S(2),() + (() + S(2))CM
24 24 yy 34 34 zz

(1) + (2 (1) + (1) (2))AT 0 (5.30)

44 +44 yz 3- 23

where use fas been made of (5.21), (5.25), (5.26), and (5.27). Since
S(2) (i) (2) (I) et
34 = - 33 = 33 etc.,

the first two relations (5.28) and (5.29) give the intuitively

obvious result
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( ) (1) (2) (2) 0 (5.31)
'yy = a zz = "yy = Q zz =0(.1

and the third condition (5.30) gives

4S(i) (1) + 2(3)AT = 0 (5.32)

44 yz 23

The z-component of the thermal strain is just

(1) = 2S(i) (1) + (I) (5.33)

zz zz - 34 yz c3 AT(

whicn with tne use of (5.32) gives the desired result

.r)(1)()CL=zz 134 (1) + (1) (5.34)
z = AT =  M $4-4"23 "33 "

44

Similarly,

C 2 (1I) 1 + ) AT (5.35)yy ="24 Gyz 22

which witn the use of (5.32) gives

S24 (1) + (()

Cly =, c= 2 $4 3 c2 2 (5.36)

S44

and finally, one obtains,

s(1)
14 (1) + (1) (5.37):x ~ " =  4 :3 C11I
S 44

Rememoer tndt in the aoove expressions the Sij and ij are

elements of the tensors in the laminate coordinate system.

The elements Sij may be obtained in two ways: by computing

the elements of the matrix C and taking the inverse, or uy direct

computation from the elements in the fiber coordinate system using

tle transfonnation Eqs. (5.11)
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For example,

S 4 = - S11sin 3ecose + S33sinecos 3e

+ S13(sin 3ecose - sinecos 3e) (5.38)

+ 2S44(sin 3ecose - sinecos 3e)

wnere

S11 = I/Ex = $22

SIZ = - vxy/ x = SI

S13 = - xz/Ez = S31 = S23 =S 32  (5.39)

S33 = lIE z

S44 = 1/(4044) = 1/(4GA)

S6 6 1 I(4C66 ) = 1/(4GT)

are tne nonvanishing components in the FCS in terms of the Young's
noduli Ex, Ez  and the Poisson's ratios vxy, Vxz (contrac-

tion, force). The qudntities GA, GT are the standard axial and

transverse shear moduli.

5.3 ELASTIC PARAMETERS

Tne elastic (Young's) modulus in the z-direction for the

laminate is obtained by applying the conditions

(1) :( ) (AT =0) (5.40)

zz zz

(1) (2) (5.41)
yy yy
(1) (2) (5.42)
yz yz

(I) (2) = 0 (5.43)

(I) + OW = 0 (5.44)
yy yy
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(1) (245)
,yz yz

where (5.44) ano (5.45) imply equal volume fractions of the two

types of ply.

The condition (5.41) gives

S(I)G(I) + S(I)G(I) + S(1))
S22 ayy 23 0zz 24 G23

S(2) a(2) + (2) (2) + (2) (2) (5.46)= 22 yy a23 °zz 24 "23 ,(.6

and (5.42) gives

S(1)(1) + S(') (1) + 2S(1) (1) (5.47)

24 0yy 34 0zz 44 c23 (5.47)

S (2) () + S(2) (2) + 2S(2) (2)= 24 "yy + 34 7Zz 44 023

wnere use hds been made of (5.43). With the use of (5.44) and

(6.45) the above relations become

(S 1) + S (21) ) + S( U) ( ) (2) (2)

2 22 )Oyy 23 zz 23 "zz

+ ( ) + (2) )a () = 0 (5.48)+ (24 24 023

(S(1) s(2)) (I) + S(I) (1) (2) (2)24 + 24 ayy 34 'Jzz -34 'Jzz

+ 2(S(I) + S(2) (1) = 0 (5.49)

44 44 )a23

and (5.40) gives the two relations

S(1) (1) + S (1) + 2S() ( (5.50)
23 yy 3J zz 34 G23 = co
(2) (1) + (2) a(2) - 2S(2) (1)
2 3 ayy S33  zz 34 a23  = o (5.51)

The relations (5.48), (5.49), (5.50), and (5.51) constitute a set of

four equations in the four variables a(1) a (1) (2) and (1)
yY ' zz ' zz' 23
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Equation (5.48) simplifies to

2s~ (1 1 + -I (a()_= 2 0 ,(5.52)

and (5.49) reduces to

SlG( + 0(2)) + 4S(1)0(1) 0(5.53)
3 z zz 44023 0

The relation (5.61) is also

- s () () + S()a (2+ 2S~ (1) M (5.54)

whicii whent subtracted from (5.50) gives

ZSM~ a 1 + S(I (a (1 _a(2)) 0 (5.55)

dnd d considerdtion of 5.52) and (5.55) gives thie results,

(1) _(2) =
yy yy

(5.56)
(1) 0(2)

zz zz

wuiicn, iT. iust be acluitted, seem very appropriate.

The relation (5.53) then becomes

2S (1) (1) +4(1) a(1) = 0 (5. 57)34 zz +S 44  23 -

and (5.54) is now

S()()+ 2S~ (1 (1 (5.58)

The aoove two relations yield the desired result,

a (1) S()
1zS() 3 (5.59)

S44

or

82



1 S(I 3$4- (5.60)

z 3 3 - 4 4

for the reciprocal of Young's modulus EZ"

Tne elastic modulus In the y-direction follows from the

conditions

( ) (2) C (5.61)
yy yy 0
C(i) (2) 5.2
zz zz(5.62)

(1) (2) (5.63)
yz yz

a(x = (2) = 0 (5.64)
xx xx

dnd for equal volume fractions,

(1) + (2) = 0 (5.65)
zz zz

y()+ yz ) = 0 (5.66)

Doing tne same algebra as above for Ez gives the desired relation

S (1) 2
1 = (1) - 24 (5.67)

y~ S 44

for the reciprocal of the Young's modulus.

In a similar fashion, one obtains for the elastic modulus in

the direction perpendicular to the laminate,

s (1) 2
1$(-) 14 (5.68)

44
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The corresponding Poisson's ratios are easily obtained from the

aDove results. For the case of an applied stress in the z direction,

xx = 13zz 2S 14023

(5.69)
zz = 3J°zz + S34c23

which with the use of (5.57) gives
S1 3 S4 4  -14S342 (5.70)

xz s33S4 4 _ S 4

Li kewi se,

Eyy =S230zz + 2S24 G23  (5.71)

and

s2 3 S4 4 - SZ4S34
yz e $24

j 33 S44 -S3

In order to obtain an expression for the in-plane shear

modulus, we apply the conditions:

(1) (2)
yz = Cyz C5

(1) (2) (5.74)

zz zL

( = ( ) (5.75)
yy yy

(1) (2) = (576)
xx = axx

(1) + (2) 0 (6.77)
zz zz

(o , (Z) = (5.8/)
0yy ' yy

rhe condition (5.74) yields witn the use of (5.76), (5.77), and

78) ,
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S (1) + S (((1) + (2)) = 0 (5.79)
230yy + S33zz +34 yz yz

and (5.76) gives
( + (1) + S(, (1) + C(2)) = (5.80)

S22ayy 23 zz 24 yz yz

The superscript is omitted in the above expression if the quantity
has tne same numerical value for both types of ply (e and - e fiber

orientation).

From (5.73) we obtain two relations

S W (1) + S(1) a(1) + S (1) (.1
24 yy 34  zz S4 4 yz = o(5.81)

S (2)0(2) + S(2) (2) + 2S (2) (5.82)

24 yy 34 zz 44"yz =o

Subtracting (5.82) from (5.81) leads to the conclusion that

(1) (2) (5.83)Oyz  = y z  ,

whereas adding (5.82) and (5.81) gives the useful relation,

S(1) (1) + S(1) (1) + 2S (1)
24 oyy S34 0zz 44oyz = 'o (5.84)

wnicn tugetner with (5.79) and (5.80) form a set of tnree simultane-
(1) (1)ous linear equations in the variables (1) (1) and

yz . These may be solved numerically to obtain the in-plane

shear modulus

(1)(cff) 0YZC 4 . (5.85)

0

5.4 NUMERICAL RESULTS

Calculated results for several parameters as a function of tne

lay-up angle a (Figure 5.2) are presented for a laminate whose plies

cons.st of u pcri.t ay volume graphite fibers in a 2024 aluminum

85



matrix. The input parameters for the fibers and matrix, as given in

Taole 5.1 below, are the same as those used by Hashin and

Humphreys (2) in a recent report.

TABLE 5.1
INPUT ELASTIC CONSTANTS FOR FIBER AND MATRIX

Elastic T-50 2024-T4 Al
Constant Graphite Fibher Matrix

E z(GPa) 388.2 72.4

E (GPaj 7.6 72.4x

C44 (GPa) 14.9 27.2

C66 (GPa) 2.6 27.2

v xz** 0.41 0.33

* 0.45 0.33
* (C) - 0.68 x 10- 6 22.5 x 10- 6

Sx(° - 1 9.74 x 10- 6  22.5 x 10- 6

**Tne subscripts are (contraction, force).

The PRUFC code[3J was used to calculate the elastic

properties of a ply in the fiber coordinate system, with the results

as given in Table 5.2 (the PRUFO code was subsequently revised as

discussed in Section 6).

The linear tnermal expansion coefficients for the laminate, as

calculated with Eqs. (5.34), (5.36), and (5.37) are plotted as a

function of ply angle in Figure 5.3. It will be noted that the

axial tnermal expansion has a minimum at about 20 deg (40 deg total

angle between fiber directions). It is also comforting to note that

the calculated results exhibit the required symmetry about 45

degrees.
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TABLE 5.2
INPUT ELASTIC PROPERTIES FOR A FIBER REINFORCED PLY

(30 percent by volume of fibers)

Elastic
Constant Value

E z(GPa) 167.18

Ex( Pa) 37.11

C 44(GPa) 22.82

C66( Pa) 12.68

* xz 0.33840

Sx 10.46294

*( C 6.29 x

C (C " ) 25.66 x 106

C11( Pa) 50.85

C12 (GPa) 25.48

C13( Pa) 25.83

C33 (GPa) 184.66

The elastic moduli along the three laminate axes are plotted

in Figure 5.4, and two Poisson's ratios are given in Figure 5.5 as a

function of lay-up angle. The in-plane shear modulus for the

laminate is shown in Figure 5.6.
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Figure 5.4. Calculated elastic (Young's) moduli for a metal-matrix
laminate as a function of lay-up angle.
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Fiqure 5.6. Calculated in-plane shear modulus for a metal-matrix
laminate as a function of lay-up angle.
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6. TRANSVERSE ELASTIC PROPERTIES OF A UNIDIRECTIONALLY

REINFORCED COMPOSITE AND THE PRUFC CODE

In a recent report, [2 J Hashin and Humphreys preseit

numericdl results for a typical graphite/aluminum composite as

calculated using a finite-element code (ANSYS) to determine the

stress-strain state in the unit cell of a model in which the fibers

dre arranged in a perfect hexagonal array. The advantage of their

method is tnat it is expected to give a very accurate representation

of tne behavior of a composite in terms of the properties of the

fiber and matrix components. The disadvantage is, as stated in the

report, "The ANSYS computer code, ... , is very expensive to run for

sucn cases." Consequently, it is of interest to compare these

finite element results with those obtained with PRUFC [ 3 ] and the

S-CUBED plastic-flow code L[] which are inexpensive to run but use

the concentric-cylinder approximation.

We present first a comparison of calculated elastic properties

of a graphite/aluminum composite as obtained from the properties of

the constituents. In the example given in Ref. 2, the properties of

the fiber dnd aluminum matrix are as given in Table 6.1.

A comparison of the composite parameters as calculated with

PRUFC and those calculated by Hashin and Humphreys for a 30 percent

by volume of fioers is given in Table 6.2 below. Also given are

values obtained from the "Composite Cylinder Assemblage" (CCA) model

of a composite (Hashin, Ref. 8).

The only significant differences are in the transverse proper-

ties ET, GTT, and vTT (only two of which are independent, be-

cause of tne transverse isotropy). Not all the transverse pro-

perties differ, however. If one considers the transverse bulk

modulus K whose reciprocal is given by

F' vTT 2v2Tj

- A (6.1)I Y - 0  - E T A

= a = a 09 0

93



TABLE 6.1

'CXJiSTITUENT PRJPERTIES FOR A GRAPHITE/ALUIINUM COMPOSITE

Elastic T-50 Graphite 2024-T4 Al
Constdnt Fiber Matrix

EA(GPa) 388.2 72.4

E T (ciP) 7.6 72.4

G AT(,!Pa) 14.9 27.2

G TT (GPa) 2.6 27.2

VJAT 0.41 0.33

VTT 0.450 0.33

LAC ) -0.68 x 10- 6 22.5 x, 10O

aLT( C -1 9.74 x. 10-6  22.5 x106

A =Axial (Longitudinal)

T = Transverse

*Tnjis Poisson's ratio is tne transverse contrdCtion fur anl axial
stress.

TABLE 6.2

CALCULATED PROPERTIES FOR A GRAPHITE/ALUMINUM COMPOSITE
(30 Percent by Volume of Fibers)

Eldstic PRUFC Finite-Element CCA
Constant Method

E A(GPa) 10-7.18 167.14*

Er(GPa) 33.06 42.26 41.78

'jTT (GPa) 10.86 15.13 14.99

~AT (sPd) 22.82 23.20 22.87

"TT 0.522 0.396 0.394

VAT 1  0.338 6 0.340 6 0.338 6

aA( ) 6.29 x 1-6.36 x 10o6  6.36 x 0

cLT(C1) 25.65 x, 10-6 25.69 x 10-6 25.65 x 10-6
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the values as obtained by the PRUFC code and the finite element

method are, respectively,

k = 38.19 GPa (PRUFO)

k = 38.73 GPa (F.E.)

a good agreement. The difficulty is that the concentric-cylinder

approximation to a composite does not provide a unique definition of

the transverse siiear modulus.

In the PRUFC code as documented in Ref. 3, the transverse

shear modulus is obtained from a consideration of the deformation of

concentric cylinders subjected to a stress field at its outer

surface the same as that acting on a fictitious cylindrical surface

in a homogeneous material subjected to the stress field

Gxx = yy = a0 = const.

F: =0 •
Ez

(see Appendix B of Reference 9). For the fictitious, homogeneous

cylinder, of course, the resulting strain will be uniform throughout

its volume and is related to the stress field by

a = 2GTTcxx , (6.2)

involving only the transverse shear modulus, GTT. For the concen-

tric cylinder, however, for which an exact solution of the equations

of elasticity is available, [9 ] the effective strain 6x/x (see

Figure 6.1) at the outer surface will, in general, no longer be

constant out will vary witn the angle e. In fact, for some com-

binations of properties and fiber volume fractions, the effective

strdin 6x/x may go from positive to negative as e -- 90 degrees.

Thus, if the relation (6.2) above is used to obtain the shear

modulus from the concentric-cylinder model, the value of exx used

must be some sort of average. The same problem of nonuniqueness
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Figure 6.1 Concentric cylinder geometry.
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occurs with Hasnin's CCA model,E 8] the value for the transverse

snear modulus quoted in Table 6.2 being the greater of calculated

upper and lower bounds (see page 295 of Reference 8).

In the original version of PRUFC, a volume weighted average

was used for xx in Eq. (6.2) to obtain the transverse shear

modulus, i.e.,

4 r 2

S o (I-) xdy (6.3)

6x being tne displacement at the outer surfdce r = r2 . This

procedure results in the values for the transverse properties given

in Taole 6.2. Since the transverse shear modulus obtained in this

manner is significantly below that as calculated by the finite-

element inethod, which is presumably the better value, several other

averaging alternatives have been examined. Results are given in

Figure 6.2, where the shear modulus is plotted versus fiber volume

fraction.

The use of

~xx =(x~x) a = U 64

results in a decrease in tne calculated shear modulus relative to

the volume weighted average (6.3), and a greater discrepancy with

Hashin and Humphrey's result for the 30 percent composite. A closer

agreement with the finite element result is obtained if one uses the

linedr average

r,.

I ] 6x
Cxx = r2 dy (6.5)
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* Finite element result

x (6x/x) 0.=O Eq,(6.4)

O- Volume-weighted average, Eq. (6.3)

O Linear Average, Eq. (6.5)

E =x (6x/x)9= 4 5  Eq. (6.6)

20

100

10

0 I I I

0 0.5 1.0

FIBER VOLUME FRACTION

Figure 6.2. PRUFC results for the transverse shear modulus of a
graphite/aluminum composite as a function of fiber volume
fraction for various possible averaging procedures using
stress boundary conditions. Also shown .s the finite-
element result of Hashin and Humphreys [2] for 30 percent
by volume of fibers.
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but the PRUFt calculation is still low. Finally, the use of

Exx x ('-/e=45 (6.6)

in E4 .(6.2) results in a PRUFC shear modulus greater than that

obtained with the finite element method. The use of (6x/x) at 450

suggests itself because tnis is also the value of

wnicn turns out to be independent of e. Calculated results for

V XYand Ex using the various values of zxx are given in

Figures 6.4 and 6.4.

An alternative approach is to specify the displacement on the

outer surface of the concentric cylinder model and to solve the

equations of elasticity for the resulting stress field. As outlined

in Ref. 9, the radial and hoop displacements are of the form

U ()(r,e) = u(a)(r) cos2e (6.7)

V ( )(r,e) = v ()(r) sin2e (6.8)

and the condition now that the displacements on the outer surface,

6x Ay = e0 = constant (6.9)x y

be the same as tnat on a cylindrIcal surface within a homogeneous

material subjected to the uniform strain field e = yy

E. , is satisfied by requiring that

v (2) (r2) = - u (2) (r 2) . (6.10)

The stress boundary conditions (B.9) and (B.10) of Ref. 9 are

replaced by
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0.8

0

0.6 - -

0.3

0.2 - Finite element result

0 xx = (6x/x): 0,' Eq.(6.4)

O. Volume-weighted average, Eq. (6.3)
0.I-

(O Linear Average, Eq. (6.5)

T -xx = (3x/x),= 4 5 °' Eq. (6.6)

0,0 1 1 1 1 1 1,

0 0.5 1.0
FIBER VOLUME FRACTION

Figure 6.3. PRUFC resuits for the transverse Poisson's ratio of a graphite/
aluminum composite as a function of fiber volume fraction for
various possible averaging procedures using stress boundary
conditions. AL. o shown is the finite-element result of Hashin
and HumphreysL2J for 30 percent by volume of fibers.
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8 Finite element result

0 exx = (6x/x)9: 0 Eq.(6. 4 )

O Volume-weighted average, Ec.(6.3)

70 0 Linear Average, Eq. (6.5)

=xx (SX/x)e=45 "' Eq.(6.6)

60

50

40

30 4

200202

10 (D

0 1 - 1I
U 0.5 1.0

FIBER VOLUME FRACTION
Figure 6.4. PRUFC results for the transverse elastic modulus of a graphite!

aluminum composite as a function of fiber volume fraction for
various possible averaging procedures using stress boundary
conditions. L o shown is the finite-element result of Hashin
and HumphreysL2] for 30 percent by volume of fibers.
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u (2)r 2) = C0 ' (6.11)

v (2) (r 2 ) = - CO , (6.12)

the other conditions, (B.5) (B.8) remaining the same. Equations

(6.11) and (6.12) follow from the relations for the cartesian

conponents of displacement in terms of the radial and hoop

components,

6x = u(r) cos2e cose - v(r) sin2e sine (6.13)

6y = u(r) cos2e sine + v(r) sin2e cose . (6.14)

As before, the boundary conditions lead to a set of six linear

equations for the coefficients of the elastic solutions, Eqs.(B.27)
of Ref. 9, the bottom two rows of the matrix K being replaced by

K51= 1, K52= 1, K53 -1,

K 54 1, K 55 U, K56 =

1 (3 + qn(2)
K61 = -1 K62 Y( W (6.15)

( )

K61 = - (1 - n 2, K64 = 1

K65 =, K66 =0 ,

where the applied strain and outer radius have been normalized to

e = 1, r2 = 1. The coefficient K2 3 as given in Ref. 9 is in

error. It should be

K23 = - (I - n (2)r

From Eq. (B.13) of Ref. 9, the radial stress at the surface of the

outer snell is given by
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CC (2 )t A + 3B C(2)c
rr = A1 1 1A2 B2  2 3D2) 12 cos 29 (6.16)

a rro cos2e

and from (B.15) the shear stress is

= G(2) [_ A2  3 (3 + (2)) (6.17)Ore = 66 2 7 (2) B 2  .7

(1 - n)) 2 - 3D2 - 1] sin2e

=-a reo sin2e

(Actually, the aoove quantities are stresses per unit of applied

strain, a/ 0 ). As in Eq. (6.2) above, the transverse shear

modulus will be ootained front the relation

axx = ZGTT60 (6.18)

where Uxx is some sort of average at the outer surface. In

arriving at an average, we consider the x-component of the surface

traction rather tndn axx(r,e) itself. In general, the force per
A.unit area on a surface with nonnal unit vector n is given by

f = n (6.19)

A Aand for tne cylindrical surface n = r so that

" A A
f = rarr +ea (6.20)

and the x-component is

fx =a rrcuse - re sine (6.21)

(Note tnat axx itself also depends upon a o). The stress per

projected area perpendicular to tne x-axis is
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f r do (6.22)

and tne linear average is then given by

1
0xx : = (rrCO - 0re sins) L dy , (6.23)

0

since r 2 = 1, and the result is

- 1 2

a xx = 'rro - T 'reo (6.24)

where arro and areo are defined by (6.16) and (6.17).

A comparison of the calculated transverse shear modulus using

the linear-average, displacement boundary conditions with that from

the linear-average, stress boundary conditions is given in Figure

6.5. Also plotted is the arithmetic mean of the two shear moduli,

wnicn altnougn still hign witn respect to the finite element result

appears to be the most plausible way to obtain the transverse

properties using tne concentric-cylinder approximation, and the

PRUFC code has been revised accordingly. A comparison of results

for the 30 percent composite using the revised PRUFC code witn those

obtained by the finite-element method is given in Table 6.3.

Hashin and Humphreys [ 2  also present calculated results for

a thermal process in which the yield strength of the aluminum matrix

material in a 30 percent composite is exceeded. The yield-strength

model they used is given as Figure 6.6, which is reproduced from

Ref. 2. This isotropic hardening model was used in the S-CUBED
residual stress code[ I ] along with the fiber and matrix properties

as given in Table 6.1, and two of the calculations were repeated.
Figure 6.7 gives the dxial strain as cdlculated with the S-CUBED

model[Ij for a 30 percent composite, initially stress free at

371°C, as it is cooled to room temperature and reheated. Using the

isotropic hardening model of Figure 6.6, tne matrix first reaches
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* Finite element result

O Di spl acement B,C. , Eos.-(6.18) and (6.24)

30 Arith. Mean, (0 + Q)12

O Stress B. C. , Eas -(6. 2) and (6.5)

20

0 0.51.

FIBER IOLUME FRACTION

Fiaure 6.5.Comparison of the transverse shear modulus for a graphite/
aluminum composite as calculated with d isolIacement boundary
conditions and stress boundary conditions. AlSo shown is the
finite element result of Hashin and Humphreys.[21

1011



0
E

-- 0

-S 
U,

-
a

U C

0-0

0S 0 J

4-S
oCL)

WE
-S

L.)

1060



cn

(A

(A (A -

U) S- (

Lr) C 4- J- (1

F CL 4.

ca a
-0 LO '.

U)) 0 U
LC) 04-C )

(v~ 4-)S

(A( a)~0
C~j ) Q-"2

4-J 04-Q:

/)0

C-) j0 u)
Q) U) r-/ c4-) X

cM
4J I

(-) e -U)-

U) 4- -4-

fu ) -) a)

cE v4) E

- )
(A 4-~ 1~ *

a~ ) C)U)

V )

C LLL

r(A.

V-- 
A

107) U



the yield surface at -142°C. Upon reheating from room temperature,

the matrix immediately falls uff the yield surface and does not

TABLE 6.3

CALCULATED PROPERTIES USING THE REVISED PRUFC* CODE
FOR A GRAPHITE/ALUMINUM COMPOSITE
(30 percent by volume of fibers).

Elastic PRUFC* Finite-Element
Constant Method

EA (GPa) 167.18 167.14

ET( iPa) 45.22 42.26

GTT (uPa) 16.80 15.13

GAT (WPa) 22.82 23.20

VTT 0.346 0.396

vAT 1 0.338 0.340

aA(C - I ) 6.29 x 10- 6  6.36 x 10- 6

OLT( C ) 25.65 x 10 6  25.69 x i0 - 6

*Revised as per above.

reacn it again until about 350°C. The initidl segment from 371°C to

142°C is shown as dashed because the present version of the S-CUBED

code does not produce output for this interval. The results for the

same process obtained by Hashin and Humphreys [ Zi using the finite

element metnod and ANSYS code are given in Figure 6.8. The agree-

menL between the two types of calculation appears to be quite

satisfactory.

Calculated results for the transverse strain for the same

tnermal cycle are given in Figures 6.9 and 6.10. Again the

agreement is quite satisfactory. We conclude tnat, when their use

is appropriate, the revised S-CUBED PRUFC code and concentric-cylin-

der residual-stress model ( I } will give results for metal-matrix

composites whicn are as satisfactory as those obtained with the more

complex finite element metnod.
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7. THERMAL DEFORMATIONS AND STRESSES
IN AN ELASTIC PLATE UNDER AN

ARBITRARY TEMPERATURE DISTRIBUTION

The material in this section has previously been submitted as
a Progress Report to the Defense Supply Service (Ref. 10). It is
reproduced here since it might prove useful in computing th-2 per-
nanent bending deformations of a metal-matrix composite under X-ray
energy deposition.

Tne method of separation of variaDles is used to obtain the
elastic displacements in a two-dimensional plate subject to an
arbitrary transverse temperdture distribution. The geometry is
illustrated below: x

(xo , z0 )

I

Tne plate, of widtn 2x0 and length 2za, is assumed to be aniso-
tropic-transversely isotropic with the xy plane being the plane of
isotropy. The stresses are then given by

auI  au2  au3
0xx C 'A 12 a + c1 3 3z - 1T(x)

au, + au + u30yy =C 12 ax 11 ay + c13 az Y1T(x) (7.1)

1 au au3
zz =C 13 a +13 a +33 a " y3

(au1  au3
ozx= C44 ( 3 a
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where ul, u2 , u3 are the displacements in the x, y, and z

directions, T(x) is the applied temperature distribution, and -I1

Y. are the stress-temperature coupling coefficients, which are

given in terms of the linear expansion coefficients a,, 83 by

S= ( + C12 ) 1 + C1383

(7.2)
yj = 2C13 1 + C3353

With appropriate cnanyes, as indicated below, the method pre-

sented here could be adapted to an isotropic plate.

In the case of plane strain, 'yy = 0, the two-dimensional

problem of interest here is

xx= C11 a C13 3z Y1 T(x)

3u 1a
3zz = 13 ax "33 * z Y3  T(x) (7.3)

zx = C44 Z + 3xu "

Tne above relations are also valid for the case of plane stress,

yy= , provided thdt the actual elastic constants are replaced by

C12 C 12C13

(7.4)
Cl C i C12

L3 3 - C33 - 7 ' Yl-* 1 -

11

Ci3

Y3 - Y3 - U YI11

The equations for elastic equilibrium,
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aaxx a xz

(7.5)
a zz + a x z 0

az ax
become wi -h the use of (7.3)

a U + a2U1  a2u 3  aT11I __ + C4 4 -- + c13 + 44 ) a xaz I Y1 a-x

ax 3z

(7.6)
a u 3  a u3  a u1

33 +_ c44+ (C13  "44 1 - o.
3z ax

In the next two sections, we outline the solution of the set
of equations (7.6) subject to the condition that the shear and
normal stresses vanish at the surface of tne plate. The formal

solution itself is exact; the numerical evaluation, however, is
approximate in the sense tnat the Fourier coefficients are obtained
from the solution of a system of coupled equations of the form

C + am + bmn Ain
n 

(7.7)
An =fn + E gnm C1m

m

where Aln and C1m are the desired expansion coefficients, and

amt fn' bmn' gnm are constants. Thus, computational consid-

erations limit one to the use of a few nundred terms.

In Section 7.1 we outline the solution for an applied temnpera-

ture distribution which is an odd function of x, and in Section 7.2

the solution appropriate for an even function. The displacements

corresponding to an arbitrary temperature function are obtained from

a superposition of the two solutions.

115



Numerical results are presented in Section 7.3. In parti-
cular, we present calculated shear strains for a discontinuous
applied temperature distribution of the form

( 0 , -x0 < x < 0.8 x0

T(x)=
I , O.8x o < x < x

Tnis problem is mathematically equivalent to the uniform heating of

two bonded plates which have the same elastic constants but

different coefficients of thermal expansion.

7.1 ODD TEMPERATURE FUNCTION

This part of the solution has been reported in Reference

9, but in order that this report be self-contained, is repeated
here. For an odd temperature distribution, the appropriate combina-

tion of functions to represent the elastic displacements is

Ul (x,z) = E Bn(x) cos kz + E Dm(z) cos jx
n m (7.9)

uJ(xz) = 2 An(x) sin kz + E Cm(Z) sin jx
n m

where

k- (n + n = 0, 1, 2,
-o (7.10)

j = (in + 1) , m = 0, 1, 2,...
0

and An(x) and Cm(z) are odd functions of their respective vari-

aoles, and Bn(x) and Dm(z) are even functions. The functions

An(x), Bn(x), Cm(z) and Dm(z) are subject to the following
constraints as determined from the boundary conditions:

1) Zero shear stress along (xoz)

A'(x ) - kBn(x o) =0 (7.11)
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2) Zero shear stress along (x,z0 )

x

JCm(Z) + Dm(zo) = - x. [A(x)

0 ~ 0

- kBn (x)] cosjxdx (7.12)

3) Zero normal stress along (xoz)
z

00
CijkAn(Xo) + C11B (Xo)= 2 m (_, r C3 z

JC11D(z cos kzdz + T(x (
0 1mT) Xo0(7.13)

4) Zero normal stress along (x,z )0

C 34 C m 1(z Ci3jD'(z 0 ) = 2 o Y3 T(x) sin jxdx (7.14)
0

The differential equations for An (XI, B n(X, C m(z),

Dm(z) are obtained from a substitution of equations (7.9) into

equaLions (7.6). The resulting equations for A (x) and Bn (X) are

C A''(x) - C3 k A W - ( ) kB'(x) = 0
44An 33 n n13 44 (7.15)
c BnC'(x )  - C4k BnW + (C + C4) kA'(x) = 0

1Bn44 ) ( 13  C44  n

and for Cm(z) and Dm(z) are

c 33C'(z) - C44J 2(z) - (C3 + C 44) 3D(z) = 0

G44D"2(z) - C11j2m(Z) + (C13 + C44) jC'(z) (7.16)

x

2T2 Y -L cos jxdx
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The appropriate solutions are

sinh(a kx) sinh(a 2kx)

A1 I cosh(a kx0 o A2n cosn(a 2kx 0

(7.17)
B =cosh(a Ikx) cosh(a 2kx)

n~x A 1  cos Ra 1kx 0  2n A 2 cosh(a2 kx 0

and

C() C sinn(b~jz) sinh(b2jz)
Ci m c-os-hlb ljz0 ) + 2m cosh(b 2jz0)

(7. 18)

0 Z cosh(bljz) + C R cosh(b 2jz)Inz C1m 1 coshRb jz0 ) 2m 2 cosh(b 2jz,*)

x
2 Y1 aT
o ~Iz ax cos jxdx

where A In' A Zn. Cim, C 2m are constant expansion coefficients
to be determined from the Doundary conditions (7.11 / .14). The
hyperbolic cosines in the denominators were factored out to facili-
tate tne avoidance of overflow during numerical evaluation. The

quantities a,, a2 are the positive roots of the equation

C 1C4 a 4 - CIC3 - 2C1 4- C2 )a2 +C (7.19)
1 4 (C 1C 3  2 13C 4  13 a + 33C44 =i

witn

(C4a 2 - C34
Si ' 44 ) 1  i = 1,2

and b1, b 2 are the positive roots of

c33 44b -( 11C33 - 2C 13 C44 - C ij)b2 + 11 C44 =0(7.20)

with
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R. 33jb - 44) i = 1,2
1 (C 13 + C 44  ' )-i

N~ote that i n the limit of isotropy, equation (7.19) has only one

positive root, a 2= 1, and the solution for A~ (x) becomes a

linear combination of sinh(kx) and x cosh(kx).

Substitution of (7.17) and (7.18) into the boundary conditions

(7.11 - 7.14) yields the following equations for the expansion

coefficients,

1) Zero shear stress along (x , z)

AIn (d I-S) I A 2n (a 2-S2) 0 (7.21)

2) Zero shear stress along (xz 0

Ci(1+ R 1 b1) tanh (b ljz0  + C 2m(I + R 2b 2) tanh (b 2jzo)
(7.22)

V-l)m (-1 nk [Ai .. U+ A .. T. T_]~

1n 2+ a2 k 2 n. 4a~k

3) Zero normal stress along (x0,z)

A1I (C 13 + C 11 S1 a 1) tanh (a Ikx 0)

+ A2  (C1  + C11S'a ) tanh (a kx) (7.23)

2 n '1 13 b1-C 11 I C 13 b2-C1R 2 1
z -I jF 1m -2 - 2. 2 m .2T0~) L C k+l k +b 2J

In arriving at (7.23) from (7.13), use has been made of the fact

that T(x) is an odd function dnd that

T(x 0) = x, 1:(-m T(x) sin jxdx
0 0 m I)
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4) Zero normal stress along (x,z0 )

CIm (C33b1 - C13R) + C2m (C33b2 - C13R2 )

(7.24)

x

2/ 13 1) T(x) sin jxdx
2 3 - Y1 Z

From (7.24),

x
0

- + 1 }f T(x) sinjxdx (7.25)

0

where

2 (Y 3 - Y r,
'% - (7.26)x 0 (33bZ 

13 R2)

2 33Ji - "l3R (7.27)
C33b2 -713T2

Note that Q d oove is defined differently tnan in Reference 9.

From (7.21)

A2n = _ Q3Ain (7.28)

aI - S
1 (7.29)

Q3 a2 S2

zSuostitution of (7.25) and (7.28) into (7.22) and (7.23) gives two

sets of coupled equations for thp cefficints Aln and C m,

RQsm = - QI lf T(x) sinjxdx ](1 + R2b2) tanh (b2jzo )

(7.30)

2-I in (,n k[a, -S, a 2 - S 2 1 A
- (-1 (-1 k-- 2 - 3  zT 2 in
0 n LJ a1 k +a d2k
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x

2 (1)nQ(13 _cR 3 (')m fT(x) sinjxdx
AnQ4n :- -- 12 R2 E k2 .2 2

2 (_,)n E] (_1)m c 13 b -c 11R Io m k " kb 2 2

C13D2-CII2 1
Q2 k2+b27 Clm, (7.31)

2J j

where

Qsm (1+Rib 1 ) tanh (blJZ0) - Q2 (1+R2b2) tanh (b2JZo) , (7.32)

Q4n -= (l 3+ClSla,) tann (ajkxo ) - Q3(CI3+ClIS2 a2 ) tanh (a kxo).

(7.33)

The coupled sets of equations (7.30) and (7.31) are of the fore

Cm1 :a+ I bmnAin

(7.34)
A f + g CAIn = n +  nm Im

m

wicI Cdfn oe solved witn the following iteration procedure:
.(0)

Im =da
AI) m

AW f V+ g C(O
In n nm Im

In

C(I) + b
in = am mn inn

A(Z) = n g nC (1) etc.In na m 1m '
m
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7.2 EVEN TEMPERATURE FUNCTION

For an even temperature distribution, the appropriate combina-

tion of functions for the displacements ts

u(XZj = 1 *(x) COSKZ + D*(z) sinix
n m (7 36)

u (x,z) = 1 A~n(x) sinkz + E C*(z) cosixn m

where as before,

k (n + 1 n = 0, 1, 2,
-1z0

j = (m+ 7) - , m = 0, 1, 2,
0

amd B*n(x) and C*m(z) are odd functions of their respective

variable;, and A*n(x) and D*m (z) are even functions. The

ooundary conditions impose the following constraints:

1) Zero shear stress along (xo,z)

A*'(x )-kd*(x )- 2 E -1mZ*[C*z - D*'(z)l sinkzdzn o no 0 Lm CMif*( m

(7.36)

2) Zero shear stress along (x,z0 )

x

jO*(z ) 0*'(z )= "?(_1)nfAA'(x) - nB()]j xm 0 m o x E n
0 nf 0 (7.37)

3) Zero normal stress along (x0 z)

C13kA*(x0  + C1 B*'(x) = Y 2 (_l)n (7.38)
An 0 11B n 0 - z 01 k
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4) Zero nomal stress along (x,z0)

C*'(z0  + C = 2 Y3  T(x) cosjxdx (7.39)

0

The equations (7.6) for elastic equilibrium are unchanged, as

are tne equations (7.15) for A*n(x) and B*n (x). The equations

for C*m(z) and D*m(z) become

C C*''(z) - C44 j2C*(z) + (C13 + C44) jD*'(z) =

C44Dm*(z) - C11j2D(z) - (C13+ C44 ) jCM'(z)

_ 2 Y1 T sinjxdx

0

The functions A*(x) and B*(x) are now

n ni

cosh (aikx) cosh (a 2kx)
A*(x) = Aln cosh (akx A2n cosh (a2kxo)

(a(7.40)

sinh (a1kx) sinh (a2kx) (7.40)

Bn cosh (a-kxo) + A*nS2  a2kxo)

and C*(Z) dnd D*(z) becomem m

sinh (bljz) sinh (b2jz)
m -CIm cosh (blJZ o) + "2m cosh (b2Jzo)

cosh (blJz) cosh (b2jz) (7.41)

D*(z) = C* R* + C* R*M 1iMI cosh (blJZ o) 2m Z cosh (o2jzo)

2 Yi 1 0 aT sinjxdx

" 11, 2 f - ifX2
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The quantities a1 , a2 are the positive roots of
4C 2) + C33C44

C11C33a - (C11C33 - 2C13 %44 - ) a2  
33 44

witn

(Ca2 C33
Si =(C 3 + 3 i = 1, 2 (7.42)

tne same as for tne odd temperature function; and b1 , b2 are the

positive roots of

C33C44b
4 _ (C11C33  2C13C44 - C 3)b2 C C44 = 0

but now

(C33b - C
Ri (C3 C4 4 ) i  = 1, 2 . (7.43)

13 441

The boundary conditions give the following relations for the

expansion coefficients,

1) Zero shear stress along (xoz)

Aln(al-Sj) tanh (alkxo) + A*n(a 2 S2 ) tanh (a2 kx o )
(7.44)

2 (_,)n mb (1-Rb ) b 2(-Rb}50 _(-)mj 2  k1+'1j C*m + k2b 2 " C*m

Z K (-12 I b2(12Rb 2m
0m k7 C~ +bj 21b1]

2) Zero snear stress along (x,zo)

Ci(1-Ribi) tanh (blJZ o ) + C* (1-R~b tanh (b2Jz

(7.45)

2(-1)m I_) a al-S) a2 (a2 -S2 )j
=k- .,2 A* +  72+2A *

x n L +alk J +a 2 k
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3) Zero nomal stress along (x0Z)

A*n(C + C Sa) + A*n(C + C Sa)in 13 11 11 2n 13 112 2
(7.46)

2 T(x ) n

z- 1 0 k 2

4) Zero nomal stress along (x,z0 )

C* (C b +C R*) + C* (C b +C R*)1m 33 1 13 1 2m 33 2 13 2
(7.47)

:2 Y3 2 YIC13 1 aTo I T(x) cos jxdx + 2 C sinjxdx

0 0 axj

From (7.46),

A4n QA* + Q*T(xo) (_) (7.48)n 1 in 2 0 k (748

with

Q* - 3 1  1Cs 1) (7.49)

Q* z y1  (7.50)
2 z - +(C13 ;C11S2a 2)

and from (7.47),

+3 im Q* J T(x) cosjxdx

0 (7.51)

x
+ Q 1J ax sinjxdx

with
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(C33b1 + C 3 R*)
3 -C .b + C R*) (7.52)

3.32 13 2
2
Y3

S Xo(CD332 R (7.53)

2Y1C13x0C -o (C3 3b2  C 3 R -
(7.54)

Suostitution into (7.44) and (7.45) yields the following coupled

equations for A*in and C*lm:

C* ,*  = - (1-R~b2 ) tanh (b2Jzo) [4 T(x) cosjxdx

x

+ sinjxdx (7.55)
f- ax

+ 2 (-I_ a2 (a2_S9 Q*T(X1);-.- 2 +a-k 2

n 2

+ £ (-1) m  (_ln k2 [a(a 1-SI) a2(a2-S2)A

x j E 2 22 1 .. 22 1
0 n +a 2k i-a

A*lnQ = - Q*T(xo)(a 2-S2) tanh (a2 kx o ) (-1)
kT

* 22 1-R 2 ) 2 1 f (-) * T(x) cosjxdx

* Q I aT sin jxdxl (7.56)

2 (- 1 )n 5m 1 )m j2F b1 (1-Rybl) b2 (1-Rb 2)+ Lo (-l kj2  -1 2' ~2 2 Ia222- Q3+b ij k b2J 2 i'm

126



where

Q m= (1-RIbI) tann (bljz o) - Q*(1-R~b2 ) tanh (b2 Jz o )

(7.57)
= (al-S1) tanh (alkX0) - Q*(a2 -S2 ) tanh (a2kxo)

Equations (7.55) and (7.56) are also of the form of (7.34) and can

be solved with the same iteration procedure.

7.3 COMPUTATIONAL RESULTS

In this section we present calculated results for several

discontinuous temperature distributions. The input, plane-stress

elastic constants, tne same as those used for the calculations

reported in Reference 9, are appropriate to a 50 percent aluminum-

graphite conposite,

Cil = 3.187 Msi

=13 1.118 Msi

C33  - 55.401 Msi

C44  = 3.298 Msi

Y = 5.033 x 10- 5 Msi/°F
Y3 = 3.705 x 10- 5 isi/°F.

The tnermal expansion coefficients are

1  = 15.705 x 10- 6 F 1

3  : 0.352 x 10-6 F 1

dnd tne length to width ratio is 10,

x 0 I

zo  = 10

Figure 7.1 is a plot of the shear strain as a function of z

along x = 0 for the odd temperature distribution

127



00

x-

LO C~j C
* L.C)C

90L zx

128)



S 1 (x) = X0 < x (7.58)
+ 1, 0 < X < X

Tne solid line indicates the shear strain as calculated with 200

coefficients, and the dots indicate selected values as calculated

with 100 coefficients. The numerical results give no indication of

a singularity in the stress field; and, indeed, from Bogy's work on

wedges (Reference 11), one would not expect one.

Figure 7.2 shows the results of two calculations for the shear

strain as a function of z along x = 0.8 x0 for tne odd and even

temperature distributions.

1
-1 9 - x < x < - 0.8 x

T 0 0

T2 (x) = 0 , - 0.8 x0 < x < + 0.8 x0  (7.59)

1
-T , 0.8 x0 < x < x0

and

1. ,- xo < x < - 0.8 X

T3 (x) = 0.8 xo < x < + 0.8 x0  (7.60)

+ 0.8 xo < x < x
0 0

The shape of the curve corresponding to the even temperature

distribution T3(x) was unexpected, but so far no algebraic or

coding errors have been found. In any case, it has been verified

that the longitudinal force at z = 0,

fO azz (XO~dx

0.8 x0
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balances that of the shear stress,

z

J xz (0.8 xo,z)dz

A plot of the longitudinal strain ezz as a function of z
along x = 0.8 xo, corresponding to the temperature distributions
T2 (xj and T3 (x), is given as Figure 7.3.
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8. SUMMARY AND CONCLUSIONS

a. For G/Al where the matrix is in a T4 temper (rapid quench to

-240°F):

Axial stresses in the aluminum at room temperature are tensile

and lie in the range 30 to 40 ksi.

Subsequent reheating will lower the axial stress, and the

matrix will remain elastic up to a temperature of approxi-

mately 600°F, at which point the axial stress will have become

compressive.

Residual hoop stresses in the matrix are tensile and range

from approximately 10 to 20 ksi for all cases in which the

fioers' transverse coefficient of thermal expansion remains

less than or equal to that of the matrix.

The interfacial radial stress is compressive and ranges from 2

to 10 ksi so long as the fibers' transverse coefficient of

thermal expansion does not exceed that of the matrix. This

would appear to be a most desirable result in maintaining the

integrity of these materials, since they are curreny limited

oy their aoility to bear significant radial tensile stresses

across this interface.

o. For G/Al where the matrix is in a TO te@,per (slow quench to

-240 0F), tne GAial residual stresses are near zero at room

temperature.

c. For G/Al in the T4 temper, a reductior of approximately 5 to

10 ksi in the room temperature axial residual stress could be

expected if the composite was quenched to -320°F.
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d. For tne d/A1 and SiC/Al composites, residual stress results

are qualitatively similar to those of G/Al of equivalent

temper.

e. Calculated axial stress strain behcivior of SiC/Al using a

yielde4 matrix material in the TO '.emper condition is in

re sonable dgreement with experimental data up to 200 ksi.

f. For a three-ldyer laminate of G/Al, minimum longitudinal

coefficient of thermal expansion occurs at a ply angle of

approximdtely 20 degrees (i.e., 20/0/20).

g. PRUFC yields G/Al thermoelastic properties in good agreement

with those reported by Hashin and Humphries who used a finite

element analysis (Ref.2 ).

h. The S-C"BED residual stress code yields results for G/Al which

are in good agreement with the ANSYS finite element results

reported by Hashin and Humphries (Ref. 2).
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APPENDIX A

ALUMINUM PROPERTIES

Thermoelastic properties and yield-strength models for 6061

and 2024 aluminum alloys are summarized below.

A.1 6061 ALUMINUM

For the 6061 aluminum matrix, the elastic modulus was input as

a function of temperature, linear interpolation being used between

the following tabular pointsoin Table Al:

TABLE Al

ELASTIC MODULUS FOR 6061 ALUMINUM

T(°F) E(Msi)

-459 11.8

75 10.0

240 9.8

400 9.0

600 7.0

1100 0.0

The Poisson's ratio was also allowed to vary with temperature

according to

v = 0.5 - E/58.823 (A.1)

where E is the elastic modulus in Msi as computed from the table

adove. The thermal expansion coefficient for the aluminum matrix

was taken to be temperature dependent according to the tabulated

points in Taole A2:
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TABLE A2

LINEAR COEFFICIENT OF THERMAL EXPANSION FOR

Al 6061 AND Al 2024

T( F) ( 10- 60F -1 )

- 400 0

- 300 5

- 200 9

0 12

1100 18.5

Residual stress calculations were done with two different

yield strength models. A model appropriate to 6061 Al in the

annealed state, or TO temper, is depicted in Figure Al. The

room-temperature yield stress at 0.2 percent offset if 8 ksi in

accord wita Ref. 12 (the elastic modulus at room temperature is

taKen as 10 Msi). A yield model appropriate to 6061 Al in the T4

temper (rapid quencning) is shown in Figure A2. Here the yield

stress at room temperature at the 0.2 percent offset point is 21
ksi, as given in Ref. 12. The shapes of the room-temperature

stress-strain curves for both tempers were scaled from that for Al

201 in tne 0 temper, for which experimental data were available (see

p. 25 of Ref. I). The variation of yield stress with temperature is

scaled proportionately to that of other aluminums (see, for example,

Ref. 13).

A.2 2024 ALUMINUM

For tne 2024 aluminum matrix, the elastic modulus as a func-

tion of temperature was given by the tabulated points in Table A3:
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TABLE A3

ELASTIC MODULUS FOR 2024 ALUMINUM

T(F) E(Msi)

- 459 12.39

75 10.5

240 10.29

400 9.45

600 7.35

1100 0

The Poisson's ratio was allowed to vary with temperature

according to

v = 0.5 - E/61.765 , (A.2)

where E is the elastic modulus in Msi from Table A3. The thermal

expansion coefficient was taken to oe the same as tnat for Al 6061

as given in Table A2.

The yield stress model for the TO (annealed) and T4 tempers

are shown in Figures A3 and A4.
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igure A.4. Yield stress model for 2024 aluminum in the T4 temper.
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APPENDIX B

LAMINATE CODE

A description is given here of the code constructed at S-CUBED

for calculating the thermoelastic properties of a cross-plied

laminate wnose individual plies may be anisotropic-transversely

isotropic. The input properties may be either the overall elastic

constants and thermal expansion coefficients of each type of ply (up

to three types oriented in three different directions) or the

corresponding quantities for the fiber and matrix constituents in

each type of ply.

The required input deck is described in Section Bi, a sample

output is given in Section B2, and a FORTRAN listing of the code

constitutes Section B3 below.

B.1 INPUT DATA DECK

Any consistent set of units may be used for the input

parameters; the corresponding output will be in the same units.

Input
Oard Para-
No. Formdt Columns meter Description

1 110 1-10 NPROB Number of calculdtions

2 20A4 1-80 HEADER User's problem descrip-
tion

3 8E10.O 1-10 VFRAC(J) Volume fraction of first
type of ply

11-20 ANGLE(J) Orientation of first
type of ply with respect
to laminate z-axis
(degrees) (See discus-
sion below).
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Input
Card Para-
No. Format Columns meter Description

21-30 TYPE(J) Type of input to follow.
If TYPE>O input for the
individual fiber and
matrix components is
expected (2 additional
cards)

If TYPE<=O, input of
overall ply properties
is required (1 addi-
tional card).

3A 8E10.0 Ply proper- Card 3A is required if
ties ply properties VFRAC>O

and TYPE<=O. Otherwise
omit.

1-10 ET(J) Transverse elastic modu-
lus for first type of ply

11-20 EA(J) Axial elastic modulus.

21-30 NUTT(J) Poisson's ratio: trans-
verse contraction,
transverse stress.

31-40 NUTA(J) Poisson's ratio: trans-
verse contraction, axial
stress.

41-50 GA(J) Inplane shear modulus

51-60 ALFT(J) Transverse linear coef-
ficient of thermal ex-
pansi on

61-70 ALFA(J) Axial linear coefficient
of thermal expansion.

3B E1O.0 Fiber Cards 3B and 3C are re-
Properties quired if VFRAC>O and

TYPE>O. Otherwise omit.
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Input
Card Para-
No. Format Columns meter Descri ption

1-10 ETF(J) Transverse elastic modu-
lus of fiber in first
ply.

11-20 EAF(J) Axial elastic modulus of
fiber.

21-30 NUTTF(J) Transverse-transverse
Poisson's ratio.

31-40 NUTAF(J) Poisson's ratio: trans-
verse contraction, axial
stress.

41-50 GAF(J) Transverse-axial shear
modulus for fiber.

51-60 ALFTF(J) Transverse linear coef-
ficient of thermal
expansion.

61-70 .ALFAF(J) Axial linear coefficient
of thermal expansion.

71-80 VF(J) Fiber volume fraction in
first type of ply.

3C 8E10.0 Matrix Identical to Card 3B,
except that the proper-
ties correspond to the
matrix material in ply J.

The sets of data cards 2, 3, ... 3C are repeated as many times

as specified on Card 1. For eacn set of data, Card 3 must appear

three times, once for each of tnree different orientations of

plies. However, if VFRAC is set to zero on Card 3, no further data

for that type of ply is required.

If the orientation ANGLE(J) is set to 0.0 on all three of

Cards 3, the code will run a series of calculations for orientations
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+e, -9, a.0 degrees of the three ply types, for increments in e of 5

degrees from 0.0 degrees to 90 degrees. Otherwise the code will do

one calculation of laminate properties for the ply orientations

spec i fi ed.

B.2 SAMPLE OUTPUT

A sample output is given below for the case ot a laminate of

SiC/Al plies, and in this case properties of the fiber and matrix

constituents were input for each type of ply.

The first section of output is a printing of the user-supplied

header followed by a reiteration of the input properties (fiber and

matrix for each ply type in this case). The properties as

calculated with the PRUFO code (ply coordinate system) are then

given for the three ply types, and the stiffness coefficients and

stress-temperature coupling coefficients are also printed.

The main output is then begun. In tnis example, the

orientation angles ANGLE(J), J=1,2,3, were set to zero, so a series

of output results at +9, -9, 0.0 degrees are printed, only one of

which is included here for the +35, -35, 0.0 degree case

corresponding to input volume fractions 0.25, 0.25, a..J 0.50

respectively. The stiffness and compi>t".. , ,.ficients are listed

followed oy the thermal expansion cwr ('-i ts. Finally the

intraply stress-temperature derivatives (W.., - i in this case) are

given in Doth the laminate and ply coordinate -j/.ems.

Toe final bit of output is a summary for each of the

orientations (5 degree increments) of the engineering elastic

constants and tnermal expansion coefficients for the laminate.
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B.3 CODE LISTINGi

A FORTRAN listing of the code is given below.
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APPENDIX B3
I* C LAMINATE MAIN PRO6RAM
20 REAL N1.N2,N3,NuxZ,NuYZ,NUTTPiuTA,NUTT7.NuVAU,NuTTM,VUrAm
30 0IMENSIONSII,61,SINVIS,6),AK(19),AYI19),AZI 191,SA1I

%* DIMENSION MEAOER12O), AIM, SI600TfM,31, PU4IC319 SISOLVIIM31
So DIMENSION CINIU,33,CPRIMEII6) ,oE16391 E2u19jE31191 ,EUKZ(19I,
1*s 0 NUYZI 19GxyI l,Gxzi19),rYPEI3lC0uM(fSl.6ppIMcqol
7* COMIION/ONEIN1, N29 #63

so COMMON/TWO/C11MM), C244,41, C314941
9* COMMON/THREEI5AP41AIIM), GAMMAZI, 6AMMA31MI

Igo COMMON/FOUR/O~t2qZ), 02(29219 0312,21
11* CORMON/INPUTIVFRACI3),AN5LEI3lE?I35 ,EA(33,qUTTI 33,qJTRI 3) SAI3),
12' *ALFT13) ,ALFA1,ETP(31,CAFtIIUTTF131,NUTIF(31,SAFI3IALrF131.
130 *ALFAFI3I,V763),E1M6f3),EAMI13),UTTMI3I.NUTANI3),GAM( 3) ,ALFPM3),
1M0 *ALFAMI319VM(Sl
ISO DATA PI/3*14159271
16* RCAO(5,1011 NPROS
17* NNN=O
too 1 CONTINUE
Igo READ(5,1021 HEADER
20' WRITE4691001
214 WRITE46,1121 HEADER
22* DO It J=1,3
230 WEADIS,103) VFRACIJI# ANGLEIJ), TYPEW.J
2M'* IFlVVRjjCIjfoLE.o.) 60 TO 18
25* IFITYPEIJ1*6T.O.) 60 TO 12

26* REAOiS,103) ET(JI,EA.j) ,UTTI)NUTA(J),SAIJIALFT(J),RLFAIJI
27* URITEII.1O51 Jr VFRACUJI# ANGLEIJI

28* WRITE1691O61 ETIJ19 EAlJl. 6AIJI
29* WRITE46,107) NUTTIJ), NUTAIJI, ALFYIJI, ALFAIJ)
300 so TO 11
31* 1s DO 19 K=1.U
32* 19 CINIK,9)ZO.
330 50 TO 21
3M* 12 REAOISg103) EIFIJICAFIJ) ,NUTTFIJINUTApIJI ,GAFI,SLFTFIJI ,ALFAFI
35* oJ),Fij)
360 REAOIS91031 ETMIJI ,EAMI.Ig NUTT"iJI ,NUTAMIj) ,GANIjI ,LFTNIJ) ,ALFAMI
37* oJ)oVMtJ)
31* WRITEI691081 J9 VFWACIJI, A46LEIJI
390 VRITCII,109I Vftj)
MO' WRIM69I1061 ETFlJl, EAFIJI, SAFIJI
410 WRjTElI,10?l NUTTFIJI, NUTAFEJ1, ALFTFlJjq ALFAFIJI
420 WRITE46,1101 WMIJ)
430 wRITEIGPID61 ETMIJ1, EAMIJJ. SAMIJI
44* WRITEIS1O71 NUTMtJl, NUTA4IJl, ALrymIJ), ALFAMIJI
%So 11 COPNTINUE
4M* N1:VFRACI1)

47* N2=VF*AC121
fie* 43=VURAC131
490 00 13 J=1,3
500 IFIVF*ACIJI.LC.O.) GO TO 13
51* IFlTTPElJl.LEoD.) 60 TO 13
52* CALL PRUFClJC!NI
53* 13 CONTINUE
540 0O 14 J=1,3
55' IF(VFRACIJ).LE*Oel GO TO 14
S60 IFITYPElil).T.Do. 60 TO 1M
S7* CALL CCOEFIJC!NI
561* 14 CONTINUE
59* 0O 22 J=1,3
60)* WRITE1I.115) j
610 WRIE1692161 ICIM4IJI,1:194)
620 22 WRITE46911?) lCINfIjlI:SS)
13* WRITE1691001
4* WRIIE16,11Z3 HEADER

b5e WRITEtb,1321
660 ANGL=-S.

6?' IIMAE:1,
680 IFI(ASSIANGLEII)).AUSIANGLEI21I.ASSIANGLEI3i I).GT.2.l IKqAx~

610 00 10 XK:1,MMAX
70* ANGL=ANGL * So
710 IFImmAX.EC.11 ANGLMANGLEIII
720 THCTA=ANGL*PI/110.
73' 00 IS 0:1,Se
74* is COUMM):~CXNIK,1P
75' CALL CROIICPRIME,GPRIMC,COuM,T4CTAl
76' DO 20 J=19%
7le 00 20 I1,9
Is* 20 C1(I1,JICP9I"EfXJl

79' 00 21 J=1,4
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go* 21 SANNA1fJI:GPAINCIJ
e1* 00 23 J=3,2
S2* DO 23 1=192
830 23 DI1IIJ)=CP0JMCI.*,J4%,
8*. TH~ETA= - THETA
8s* XFIM~AXAEo.1l THETA=AN6LEI 2'*PI90S
86 DO 1b 9=198

87*lb COU~jKI:CImIE,2)
SI. CALL CROT1CPR1MC,GPEXIICDcU4,THETAT

$90 00 30 J=194
91)*0D 30 I110

910 30 CZI1,J):CPRIIEII,Jl
920 00 31 J=1,4
930 31 GAMMA21J1=G0QI*CIJ)

940 D0 2* j=192
95* 00 24 1=1,2

970 THETA=0.
go* IftI(PAx.CO.1) THETA=ANGLEj31*PI&OS.
99* 00 17 x=198

100* 17 COUMINI=CINIK,31
L0is CALL C*OTICPRI"EvGPR1PfC.CDUNTHEVA1
102* DO *0 J=1,4
1030 00 *0 1:194
101" 40 C3119JIZCPRIpgEC19J)
105* 00 41 J=jtq
lab* 01 6AMMA1IJ):SPRIHC(J1
1070 00 25 J=1,2
too* 00 2S 12192
1090 2S 03fjv1=CPR1RE114*%1,
Ila* CALL CXfS11.S2,S31,S41)
III* CALL CYlSl29S22tS329S%2)
Liz* CALL C11SI3vS23vS33tS431
113* CALL 6?21S1*,324,S34,S441
II%* CALL 6xZXTSSSSbqS65vSbbI
115* 00 26 j:itb
116* 00 26 1:196
1170 26 SI!,JIZ0.
lie* hlIq1=311
1190 5(1,2):S12
120* S(193):S13
1210 SfIv1,*):zSI4
1220 3129li=S21
123* S1292)=S22
1240 512*31:S?3
125* S4 9 , 1 22.*S24
1260 31391:=S3 1
127* S13,2i=S32
1280 S3333:533
129* S31t2.O3
1300 S4.,1)=Sc1
131* SI*,21=S"2
1320 S1*,31=SU3
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1340 S1595)=SSS*20
135' sSqb1=ISsb*2.
136' 31btSi=S65'Z.
1310 S16,6316602o
131' CALL 1NVRS169SPSTNV)
1390 CALL 7MEPMLIA,S3GOTI
1"* AXfKK)=A1IJ
1410 Ay1MK):A12j

141#0C21KXP:1./S22
1*5.o E3999311/S33

11460NIJZIKK)= - S13OE31gKK)
1470 NUVZfXKIZ - S23*E31'U(3
Joe* GAA4XK)=9S#SINV1%94)
1490 GxzINKJ:.5*SINYIs,5)
1500 GXV1KK)=,5S!NV1&,6)
1510 ANGL2= - ANSL
1520 ANGL3=O.

153* 1FIKPAX*NC.1) 60 TO 51
IS4. ANGLZ=ANSLEIZI
155. ANGL3:ANGLE#31
156' 51 CONTINUE
1570 WRIVE1601111 ANGL, AN6L2, 64SL0
is$* WRITE1691181
159' WRIVE1691193 SINVEZ.Z 3,SINV11,23,SINVI1,33,SXM#VI4,1t
1600 IRITE1691211 SINV1Z22,S!NVf2,3),SINVI*,2)

1610 xx:.SSIN,121SN1,e9IV43

163' XY:.Se0SINI5,61

165' XXY:.SeSIMVIG,61
3s6' UDITE16,123) X
167' WRITE16,1371 IT, IVY, II?
168' WRITCI,,1241
169' vaI7TE,611 s S11S32,S13.S14
1700 WRITE1691?6I S22,S239SZ4
1710 WIVh7E#6,127) S33,S3%
172* VAIT1691261 S44
173' WRITE16,1383 SS5,S56,Sb6
1740 WRIVE1691291
175* WP!TCI6,1311 A
176' vRlTE16#2351
177' Do 42 J=193
178' IF4SIGO0Tt%,J).NE.O.) 60 TO 43
179' GO TO 42
190' A3 00 AN 1=1,3
lei* 46 JFq*8SS16007TJJ,,SrSOOTfAJ,).oLT.1.C-07) SJGOOTI1Jj)Z0.
182' A2 CONTINUE
183' PIIIANGLOP11180a
184* PHIIZ3:AfNGL2@P11180-
185' PHII3:ANGL3*P!/1sO.

1F6' 00 62 J=193
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all Cc~osEp'411J1

190' C02=1. - SI2
191' SISPLYI1,JI:SIGOOTI1,JJ
192' SI6PLY92.J)=S1900Tf2,.I3.COZ - Zs'Sl500T14,J1*SI'CQ * SIGOOT439JI
193' a OSIz
1940 SI6PLVf3*J)=SIGDOTI2vJ1.SI2 Z*'SIGOOT1%sJ)'SI*C30 *S1300T139J)
195. 0 oCa?
196' SI6PLTI*,JI:SIGDOTfZ,J1.SI*CO * SIGDOTIIJ)*fC02 SIll
19?' * - SIGOOT939J2.SI.CO
196' 62 CONTINUE
1990 00 10 J=I1,3
ZOO* 60 WRITL16131 J9, ISISOOii,,J1=9%
201' wRIVE4691411
202' 00 01 J193
2030 61 WRITE16,1361 J9 ISISPLY119JItI11
2ol' WRITC161321
205' 10 CONTINUE
201' WRITE1,1001
207' VRITE16,1121 HEADER
2030 WRITE1691331
209' WRITEIG9131
210' INGL:-so
211' 00 50 I-1,xNAX
212' *N6L:ANGL * So
2130 INGL2: - ANSL
2h4* AN6L3:0.
ZISO IFIK"AE.NE.1? 60 TO S2
211' ANSL:ANGLCI11
217' AN6L2:ANGLEt2l
216' ANGL3:ANGLE13)
219' S? CONT IuUE
220' S0 WRITE16,1301 ANLANL?,*wL3EIIIIEZIIIC3111,NUXZII lNUYZIII,
2210 0 6Atf1IAIIII.AyfIP.AZI
22?' WRITMi,139)
223' ANL-5.
22F40 00 2? l:R.KNDE

2ZS* ANGL=AN6L * S.
221' ANGLZ: - 3MW..
227' aNGL3:0*
226' IffIHAr.NE.1) 60 TO 53
229' INGL=ANGLCI1I
230' AI#GL2=ANGLE121
231' ANGL3=ANGLCI3)
232' S3 CONTINUE
233' 2? WRITE46,14O3 AN6LA46L2,ANGL3,6IZI2,GXY1I1
234' mNN:NMN 4 1
235' IFINNN.LTeMPROSI G0 TO 1
2360 STOP
237' 100 FORM*TI1HII
2380 101 VOOWAT1101
239' 132 FoRmATI2GAU
24,00 103 VOR"ATIEc10.O3
241' loll FORNIT1IN ,ZOA%,1/)
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2212* 105 FORMATI/I/,* INPUT PROPERTIES OF PLY*9I2,' VOL :'F.,
24* 0 AT',77.2,' DEG TO LAMI1NATE I - AXIS99/1
2164* 206 FORMATS' ELASTIC MODULUS TRANSVERSE:',EII.5,t AXIAL=O#EIl.S,'
2* 0 AXIAL SHEAR RODULUS',vE11.5I
2116' 107 FORMATq' POISSONS RATIO NUTT',F33.8,' NUTA=99F1103,IOXv'THERM
2470 * EXP TRANSvERSr:'.r11.SSX,'AXIAL:'.C11.51
p*so IDS FORMATll//,' CONSTITUENT INPUT PROPERTIES OF PLY9,12,SX,'VOL FRAC:
209* *gF?-59' ATO,F?9Z,' DES TO LAMINATE Z-AXIS')
250* 109 FORMATSI,' FIBER PROPERTIES',sX,*VOL FVAC='pF795,/p
2510 110 FORMATI/,' MATRIX PROPERTIES',SX,OVOL FRAC=',F7.S,/1
2Sz' III FORMAT(' PLIES AT #l,F3.O,l,F4.0,',',F3.O,' DES TO LANINATE Z-Ax
253' eIs,/3
2%* 112 FORMATIN 920A~l
2550 113 FORMATS/,114 ,*C16.II
236* 114 FOR"ATSIH ,8E4*51
257' 115 FORMATII,' STIFFNESS COEFFICIENTS OF PLY',!?)
256' 116 FORMATSI 119SX9'Cll=',Ell*SvSX#'C12='vElle5,5X9'CI3=19EI19SXz'C33
2S94 e:',ER1.5)
260* 117 FORMATIS 11SX,'C*R:',ElI.5,SX,'C66=',E11.5,SX,'6A4411:%vEII.SSX,
261' eSAMMA3=',E11.5)
262* 116 FORMATS' STIFFNESS COEFFICIE41S OF LAMINATE')
263. 119 FORMATS 3M ,SXg'Cll=' EII*S*SX9'CZ2:' ,EII*5#59*'CI3='vEllo.5X,'Cl4
26*'0=9I~~
265' 121 FORMAT(I 11 2SX,'C22?:%(11.5,5X,'C23=',EIZ.5,5E,'CZ*:',E1l1.
266' 122 FORMATIIH ,*SX,*C33=',EI1.59SX9'C3%*%Ell*SI
267* 123 FORMATI1U ,6SX,*Cll='ipEIZe5f
266* 124 FORMATg/9' COMPLIANCE COEFFICIENTS FOR LAMINATE)
2690 125 FORMATS114 ,SX,'S11:',EZI.SSX,'512=.,E11.S,5X,'1S:',IE11.5,sX,'S1*
2700 e=*,EZ1.5l
2710 126 FORMATSI 11 25X,'S22=',E1Z.5,5N,'523:',E11.S,5X,'52*:'.E1Z.SI
2720 127 FORM4ATlIN ,*SX,'S33:' ,Ell.5o5X9*S3%*%ElleSI
273* 123 FORMAYTIM ,651,'S**:,qE1.s)
27140 129 FORMATSI/' THERMAL EXPANSION COEFFICIENTS FOP LAMINAE')
275* 131 FORMATSI 3 SX,'ALF3:' ,ElloStSto'ALF2=' ,ElloSvSX, 'SLF3=*tEll*5,5X**
276. *ALF%='9EIISJ
2?7 120 FORMATjIME1
273* 130 FORMAT(* #**,3.oa,','F*.0,'. ',F3.09E2.5j
279' 132 FORMATI,'**.***.*********..*****S***'
290s 133 FORMATl/I,' LAMINATE ENGINEERING ELASTIC CONSTANTS AND COEFFS OF I
231* 9HERMAL EXPANSION')
232* 134 FORMATI/,' PLY ANGLES ',5X,'EX',IOE,'EY',1oE,'EZ',94,'NUXZ',Ux,'
2e3* *NUVZ',91,'GVZ',8X, 'ALFX %IX, 'ALFY',8X. 'ALFZ ,/J
24* 135 FORMATI/90 PLY STRESS-TEMPERATURE DERIVATIVES ILAINATE COORD SYST
265*e~l,/
286* 136 FORMATIS 11 SX,'PLY',1Z,5X9'DSISXT=',E11.5,51,'DSISYJT',9E1I.5,5
287' *X,'OSIGZ20T=OE11SSX* OSIGYZDT=IoEllosI
zoo* 13? FORMATS 3H ,2SX, 'CS5:',E33.S,5E.'CS6:',EII.S.Sx.'C66:',ElI.5I
290 138 FORMATIS 19 2SX,'SS5:',EIR.5,5X,'556:',Ell.5,SX,'516:',E11.5)
290' 140 FORMATI' .',F3.GO,,,Fq.O,',',tF3.0,ZC12.51
291* 139 FORMATS/90 PLY ANGLES *,SX,GXZ,9x,*Gxyqt/9

292' 141 FORMATOW, PLY STRESS-TEMPERATURE OERIVATIVES IPLI Z33q9 SYSTEM)',
293' /
290* END
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10 SUBROUTINE CCOEFlJC!Nl
2. WEAL NUTT,NUTA,NUATW4UTTF,NUTAF,NUTT,NUTARq

30 01"ENSIOM CINIS,31
COMWON/INPUT/VFRAC13) ,*NGLE13I ET(3),CAI3I ,NUTTI 33,NJTU 33,5*433,
**LF1131,*LFA*13,TFI3),EAF133,NUTTri3INUTAFI3,5a433 ,ALFYF 633.

60 *LFAFI33 ,V7I3),CTM(3I ,A(AM33,NUTT"43JPeUYAM633,6A*(3I ,*LFTH(319
70 *ALFAP133,VMI131

so NUAT=EVIJj#MU1AlJ)/EAlJ3
go OCLI*:3. - NUTYIJ1002 - 2**NUTAIJI*NUAT - 2s0NUTTlJI)rEUT*6J)$NUAT

100 CIN(1vJl=CTtJl*SI - NUTAIJI*NUATJIOCLTA
110 CXNt2,JJ=ETlJl*SIIUTT4jl # NUAIJI*NUAII/OCLTA
12* CXN13,JJ:IJ10fe1 4 NUTTIJII.'EUTAIJI/OCLTA
13* CU.64#Jl=EAlJf*41. - NUITIJI*02)/OCLTA

140 CIN4SqJl=G*Ij3
IS* CIN169J1.*sCzNEIjl - c1P4629JI)

160 CINI?,J3:ICINII,Jl * CIP4IZJIBOALFTIJI # CI413#Jl#ALv41jl
1?* CIx6S,J)=2**CINf3,JjoALFTlJ) 0 C!Nf%,JIOALFA(JI
Is* RETURN
IV* ENEO

END3 OF COPP!LATIO4: NO DIAGNOSTICS*
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1* SUBROUTINE CROTICPRI"C ,GpRIMEcIM ,THETA)
2* C SEE MEMO 13 OCT 02 RICE TO SURTMAN
30 C COMPUTES CPRIM[IIJl ELASTIC CONSTANTS INe ROTATED COORD SYSTEM
%* C FROM THE CIN ELASTIC CONSTANTS 1IN THE FIBER SYSTE4
So c CIN131C119 CIN12)=C1Z, CIN13),C13v C14141=039, :Imi5iC44,
1' c CZNIGI:C6 = *50oI3 - C121 If' MATERIAL IS TRANSVEQS:7LY ISOTROPIC
7* C COORO SYSTEM ROTATED BY ANGLE TH4ETA ABOUT THE Xl::13 4XIS, wHERE
Be C THE FIBER DIRECTION IS THE OLD Zt~ll AXIS
go c CIN17) = BANAl, CIHIS) Z SANAZ

IQ* DIMENSION CPRIMEt696), CIN1S), 6PRIME4%)
Ile X=SIN(THETAl
120 Y:COSITHETAS.
130 X2:02
100 12:*2
150 xo:12ox2
Is0 ,o=Y2*Y2
170 13=X2.1
Is 7=Y*
190 CPRIME111CIN4l)
20* CPRIP"Ell92l:,2eCtifZl # X20C1N13)
210 CPRIMEIZ,31=X2*CI412) # V20CINI31
22* CPRIMEl1,o,:Xov01C1N131 - CIN121)
23* CPRIMEfI,51:O
24* CPRIME I1*61:O0
25* CPRIME12I,)=CPPIMEI,2)
260 CPQIMCI2t2l:vo.CINl1, # X4*CIr4IO) 2.oXZovZoCxqt3,
270 # %.oX2oY20CINiS)
260 CpIPEZ.331xZSY2*CIN(1) 0 CI144O11 (X 41 Y0I*C19413
296 - 0.*X201?OCINIS)

300 CPRIMC(2,41Z X*Y03*CINIII # IXOY3 X 3*YIOCZN131 # 313*CINIOI
31* 4 2.Otx*Y3 - 30Y)OCIN45l
320 CPRIMEI2,5l:Oo
330 CPRIMEC2961:O.
34* CPRIME13,13:CPRIMEI1,3)
35* CPRIMCI3,2l=CPRIMEIZ931
360 tPRIMCI3,31:Y0OCINIO) # X40CIN1l) 4 2.OXZ0120C131 * %.012*Y2
370 * CINIS)
380 CPRIMCI3v01: X30YOCINI1I # XOV30CIN441 * 4X301 - XOY3IoCIN13I
390 0 2.*IX3iy XOy3IOClN4Sl
400 CPRIME139S)=O.
fl10 CPRIMEI3*61=0*
420 CPVIMCIO,11:CPPIMCfIvt
0 CPRIMEfO,2)=CPRIMElZ.0J

Is 4 CPRIMEfO,31:CPRIMEf3#40I
as* CPRIMEl,,0I:1Z*Y2*ICINl1) *CIN1411 2**XZOY2OCIN131
05.* * 0 161 - X10*O210CINIS)
07*o CPRIMCIOv,S)0.
4S. CPRIME4,5I:Oe
49o CPRIME5,II:O.
Sao CPRIMEIS,21:O.
sbo CPRI"EIS,3100
52e CPRIMEIS,01:O.
530 CPRIMEISSIY;*CINfSI 0 X20CIN16I
500 CPQIMCS5,61:IOY*ICIN451 - CIN4611
550 CPRIMCI6,1I:O.
560 CPRIMElb*21:Oe
57* CPRI"EOS,31=00
Sao CPRIMEI69,10*
590 CPRIMEg6Sf=,CPRIPEIS.61
600 CPRIMEt696l:,2oCINIS, # XZOCINIS)
610 GPRIM[I1)=CINI7)
620 GPOIMqEI2I:Y2*C!N171 * X20CINISI
b30 6PRIME13I120C1Nf71 # V20CIII81
100 GPRIMEfU,:iCIN(S) -C1N17J)OOY

b50 RETURN
66# ENO

ENO OF COMPILATIONt too DIAGNOSTICS*
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1* SUBROUTINE CXES1iS2iS3iSui
20 DIMENSION Nib)
3* REAL Ni, M2, N39 K
%* COMNONiONE/10I, N2# N3
So COMMON/TWO/CJ1*,*), C2449419 C314,41

50 COMMON/COEF/X16.7)

9* *1,33:0.3*2

11* i6I1,53Clii,31
120 911 i12CiIi.*3
130 K41971.

IS* 94292)=C;1i,11
lb* K12931=0.
170 K 2#4 I=C;Z 1,21

is* 912,51:2 Czi,1

20* H12071=1
210 K13931=0.
22* M13921:00
230 N4393)=C311)
2%0 M13,*3:C311,21
2SS N13,S):C341,31
260 913961=2.sC31Ii,*I
27* K139731.1

290 Kt*,Zl:N20C211v21
300 K44,31=N30C311921
310 91I9.tlNI*Ci1ZZ3 # N2*C2#2.2) * 3c3(Z.2)
32* M6*,51=NW*112,31 # N20C21293) *N30C312,31

33s mf%,51=2#$fNi*CiEZ,*3 * N2*C212,41 # M3*C312,*)3

340 K4 , 71=0
35* XlE5.zNRSC1IZ,3)
35. KfS,21=N2$C261q31
37* KI5,q3l:NS*C3Ii,31
36* m659%l3*i*Ci(2q31 # NZ*C262g3l * N30C312,31
390 KlS#S)=fti*C113,3 1 # N2*C243#31 # N30C313.31
400 KIS,61: 2 -01141$Ci(3,41 * N2*C263,*I * N30C3(3,411

42* Kq6,iI=Ni*Cill.*I
*630 K1S,21N2CZI1,*3

4 fs 0 t (6 93 1 N3*C31 I I )
*50e KfI5%*I"i*CiI2,*3 # N2*C242p*3 * %3*C312943
460 K169SI:NW*113,*) # M20C243941 * 1030C343941
470 N4S,61=2*0ENi*ClI*,*l *N2.C214#41 N3*C314,411

#is* 45, 71=0.
490 CALL R00T46,X)
so* EPSX=Ni*ltll * N2*1421 *X0433
51* Sll=CPIX
S20 S21=1141
S3* 531=1(51

So* 5*1=1453
550 RETURN
56* ENO

EN, OF C04PILATIONs No DIAGNOSTICS*
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10 SUBROUTINE EY1S12,S2Z,S32,S%21
le DI"ENSION X(61
3o REAL Nit N2, N39 K

%* CONNON/ONE/41, X2, 93
So CON"ON/TwO/C1Ife,~f C2(4,41, C314,41

60 COMMONIcCEFIX16,71

90 1(11931=0o,3
IQ* Nt I,942C11 1 Ni

120 KI3,b)= - ClIII1
13. N42,11=0.

15e K(2931:0*

170 91295)=2*C211,41

16. it12961= - C211921
19. M13911=0.
20* N13923:O.
21. N13931=C31 1911
22o 13,41=C3(1931
23. M13v5)=2o.C311,N)
Zff. g13,bI: C31&,21
250 ne., 1,:wi*Cii@1.3
Z60 MlI49ZP:NZ.C2, 1,33
270 KEN, 3)=N3sC3#I,3)
26o NINN)111I 3 931 N20C213931 N30C313931
29* Kf4,SJ=2..INI*C1IJN) # PEZ*CZ13,N) 0 N3*C3#3t%.#)
30o 944,61= - I*C112,31 # N2*CZB?,33 * N30C312,311
310 I,3N.ll*
32o K(s,2l:zM2C2I1I4
330 9jS,93=N3.C3f1,%i

K(5q*)=N~sC1I3,~3 * ,I20C213941 0 N3*C313,4J
350 K15IS, 2*0INI.Cllq,NP # N2*CZIN,%) # N3*C314,N)3
36* 915961= - INIOCIO2,N) 4 42*C212*N) * N3$C3(2.I))
3?. CALL ROOTiS,X)
38. S1611:Ciq1,Z21Xtl # C112,21 # C112,33*X1N1 * 2.*ClIz.%).NI5)
39* SISY~zC211921*Y(21 * C212ZI * CZ12,3)*XI*3 * 2.*CZf~,sJ0X(5)
1#00 S16Y3=C341,231X33 # C312921 * C342,31OX(4) 0 ?.SC3g2,41.NiS)
91l* SXSY:NI*S15y1 M 20SI6Y2 0 43*S3GY3
42. EPSXNN*Xt1) N20Xtz) * N30X(33

430S12ZEPSXIS 16Y

99* 5Z2=Xl./SIT

: 70 RETUPN

(43 OF C0NIP1LOTIONt NO DIAGNOSTICS*
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1* SUBROUTINE CZISZ3,SZ3,S33,S*31
2. DIMENSION 9161
3* REAL Ni9 N2, N3, K

f#* COMMONJONE/NI, N2, 03
SO COMMONITwo/Ci*.*I, C2149411 C314,*
6* COMMON/COEF/Kiig,7I

3. Ki.?3l:O.~t
9* NK4*1,3:.

90 K 91*1,502*CiI1

12* Kilobl - C111931
13* U42911=0,

jr~o Kl 2*22il,Il
is* 9(2931=0*
160 K12,*I:C241,21
ITO K12,51=2.*CZ(1 ,*
it* N42,61= - C211,3)
19* X43911=0.
200 943921=0.
210 XIS.S)=C51.1)
220 13,41=C341,21
23* KS 3,5I:*C31194q
24* X13,61= - C341931
250 K14,13:N1*CiI1.Z3
26* XI4q2)1j2*CZf192l
27* K44,3)=N3*c311921
23. Kl4,4l=Nl*CiIZ22 * 420C21Z,21 mSO3C3(2921
29* K4*,53:2.*4NI*ClfZ,*1 + N2*CZ9Z.*3 * N3*C342,III3
30* K1496): - IN1*CI12,31 * NZOCZ(2931 * N3*CSIZ3311
310 xfKIi)Ni*Ci(i,*3
32* XIS92J=NZ*CZfI,*I
33* KI5,31=03OC34i.*I
Sq. Kf5,*I:NR*CIl2,*I * N20C242,*1 * M3*c3IZ.'uI
350 #I,32*W!1** N2*C2(4,41 + N3*C344,*II
36* KiS,8I: - INIOC11394) * N2*C213t4) # NS*C343,411

37* CALL ROOTII,)
38* SIGZ1:CIII.31*Xt3 0 CIIZ,3*NX44 * C113,31 4 29*:113,41-xi5)
39* SISZ2:C211,310K123 # CZIZ,31OX14 * C213931 4 2o*C 2I3 t,**KS)

*0* SIGZ3ZC31i,31*XI1 * C3g2o31*Xt*I + C343,31 4 2-*C313q%)*X4S)
410 SIGZ=NI*SisZI N2*SIGZZ # 430S16Z3

F420 EPSX=UMi41 NZ.Ks2I * 43*XI31
43* S13=fPSXSIsz

44* S23=Xti%/SIGZ

45* S43=IS/SIGZ

*70 RETURN
*6* END

E43 OF CO"P1LATION: NO DIAGNOSTICS.
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I* SUORourINE &KZKYIS5,S56vSB5SSSA
2* DIMENSION X16)
30 REAL Nl.M2,N3,N

40 CQMMONJONEIN1, N2, N3
So CoOON/VOURtII2921, 02t2,21, D342,21

6# COMMON/COCF/K(6971
70 00 10 J=19?
so DO 10 1=1.6
9* 10 mitil=IO.

IQ* X4I1,11=0111,11
its KlIZ)DI1923
12* ~ 17.
130 912,3)=021191)

140 912,41=0241,21
Is* Kl2,73:.5
160 Kf3 v5I:0 3 t1 lDl
17* K13061=03(1921
Is* X13971=05

190 NI*,13:0141*1,
20* KI*,21=01292)
210 j(4S,31=021192)
220 mis,u3:0212.2)
23* 0(46,51=0313,21

24* MIA,61=031z22
25* CALL RQOTI69XI
260 EPS13=NI*xl13 * N2*xt3l + N3*Xl5j
27' EPSIZ=NI*xfZ) 4 N20XI41 * N3*Xtb)
280 S55Z.SSEPS13

290 565: .5 PS 12
300 911971=0#
310 N12P.IZ-0
320 M139?1=0*
33* X14,71=05

384 K59 71= .5
35* Kf6, 7 1 =.5

36* CALL 100116,13
37* EPS13=N1SX(Il + N2*XI31 # N3*XI5)
390 EPS12ZN1*X(2) + N20X*1h * 434SI63
39* S56=.5*EPS13

4Q* 66: s *C PS12
414 RETURN
1020 ENO

ENO OF COMPILATION: No DIAGNOSTICS.
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10 SUBROUTINE 6YZfl*S24tS3**S%41
20 DIMENSION X461
3. REAL W1, N2, N3, 9

%* COP9NON/ONE/Ml, N2, 43
5* COMNON/TUo/C1I*,'h), C214941p C314941
1* COMNONICOEFIK1i,71

9* K11921=0.

10* WII,*):CII,921

120 K41961= - Z.*CI1941
13. K12,11)0.
IF40 912,21=C211,11
is* X42,31=00
16. K129*3:CZIX,2)
17* 91295)=CZI1, 31
is* 912,61= - **C241,41
190 K13911=0.

23* 913,21=0.
21* K13,3):C311,11
220 91394)=C34121
234 K13951=C3(1,31
2%0 913,61= - 2o*C311,s1
25* 914913ZN1.CI1,2)l
260 NI*.2)=N2*C211,2)
27* K16,3):N3*C3(1,21
26* K4.,.3:NI*C112,2) 4 N2*c212921 * m3*C3(2921
29* K44,S3:NI.clIZ,3) 4 N20C242,33 * N3*c362,3)

30*91K663 - 2.*lNl*Clf2t*3 * 420C212941 * 43*C342,311
310 KIS,13:NI*CIl.l3)
32* KIS@23:N2*C211*3)
330 115,3l=N3*C341,3)

34* A594)=N1*C162,3) * 20C2231 N3*c342,3)
35* K14595)N1.C113,31 N2*C243931 N3*C363931
36* K45961: - 2**IN1'C113,e1 0 N2*C2g3,*I * N30C3439411
37* CALL 100115,1)
36* SI6YZl:CI1l,,,1* * CZIZ,4*Xt*I * C13*41*KisI * 2.*CRI*,*)
39. SI5112=C2f1,as).112) * C214)*EI*l * C21394)*XISI * 2o*C244941
0* S16123=C341,%*Xf3j * C312,4*XE6* * C313,4*91KS) * ZoOC344,*,
410 5161z-N1*sIGyz1 0 tdZ*sXGYZZ * N3*ss16z3
420 CPSX=NI*Xll * NZ*X12) * N3*X11
430 S1*:.SOCPSX/SIGYZ

44* S2%*SeXg*3/SI6TZ
*5* S3%*SoxfS)/51617
1460 S44**./sX6yz

1170 RETURN
460 ENO

ENO OF COMPILATION: NO DIAGNOSTICS.
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1* SUBROUTINE INVERT INVOOLO
2* C IN4VERTS 3 X 3 MATRIX INVOO20
30 CONMON/NIX?1Cl3,33, 0131, XX INVOO30

F*COMMONISOUT/SI3,31 INVO0O*O
ss D=:Cllvll*C12#2l*Cf3,31 -C(392l*Cf2t333 - C1IZJ*1C12911*C1393) INVOOSO

60 - Ct3-l)*CIZ,333 # Cf1,3)sfC(Z,1)*Cf3,21 C13,13.(2Z,211 INVO0
7* S(1,1J:l12q2l$Cf3,3J - Cl3,2)*C6Z,3II/O INVDDlO
so S41921=- 1C1,2)*C43,33 - C13,*111/0 INVO0SO
g. SlI,lJ=(C(1,2f*CZ2,3f - ClZv2I*Cl1,3)lt0 IMVOO9O

10* sizRi:-- IC1Z,1jeCg3,31 - C13,11OC(2931)/D INVo100
lie SIZ2:6)=C11,1J.Cl3931 - C13v11.CfI3i110 INYolIo
12* S1293)=- ICII911CC42931 - C1?.13*C(l.333/O INV0I20
13* Sf3915:4C129IJeCl3,2) - C13911)*cI2,2110 INV0I30

114* S13,21=- I41,11*C13,21 . C1391)*Ct19Z3)/0 INVOI40
IS* S13,33:6Cl1,13.Cl292) ft C12,110C41,2111O INVORSO
1b* RETURN INVO160
17* END IMY0lTO

END OF COMPILATION; NO DIAGNOSTICS*

Is SUBROUTINE INVPS(N,XrN,ROUTI
2* C COMPUTES INVERSE ROUT OF INPUT MATRIX RIM
34 DIMENSION C(6,710 XIN4S66, ROUT1S,53, xISI
40 cOM"aN/C0CF/C
So 00 30 J=1#6
60 00 30 1=1,5
To 30 CII,j)=xINlI,j)
so Do 10 J:1,N

go DO 20 Kg1,N
10* CIKVNO41100
110 IF(X.EO.J) CIKN*11=1.
12o 20 CONTINUE
13o CALL RO0TfN,XI
iC0 00 40 L=1,N
ISO 40 xOUTILJ)=XILi
lb* 10 CONTINUE
17* RETURN
Is* END

END OF COMPILATION: NO DIAGNOSTICS.
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Is SUBROUTINE mix M1100100
2. C COMPUTE EFFECTIVE ELASTIC CONSTANTS FROM THOSE Of COISrITUENTS, 4IN00200
30 C CII * C12, C139 C339 GAMMAl, 6ANMA3 HI X00300
40 REAL NI, N2, 9121, KE MI 1004100
so C0mmoN/ELAST/Nlv C11121, C12121 41100500

b*COMMON/MIIZ/C113,3), C213931, GAMMARI31, 6ARMA2I31, 3CTAZ131, 14f1100b500
7. 0 BETA2431 011100700
so COMMON/NIX2/CE1393)9 GAMMAE131, ME 41100600
go MIC11l)l * Cl11,21 41100900

10. miz,:czflo11 * C211,2) R1101000
11* N2=i. - Ni 41101100
1?. M=N2091RI * *42) * C241p1) - C241,21 41101200
13* MEZNR.IR) * N20KI21 - t(l)I - A(2114020001042114 41X01300
14s CE1,31=01i*CRII,31 # N20C26113l - *MIII - XMIZ1it*iCR,3) - IIO140C
is. * C211.311*NZ*N/1 "11101500
160 CE13931N1*OC143931 * N2*C2(3@33 - 2.*ICRI1131 - CZ(1,33)*2*N1*%Z/mIXGlb03
17* * 4mIX0170a
Is* GARMAEIRI=4i.GAMMAI1ii * N2*SAPNAZI11 - IGA40441111 * 4AMA21) 411016100
190 *#Kill - MIZI)*Ni*NZ/H 41101900
200 GAMMA4AI3:Nie*6AfMAII3f 0 01Z*6APINAZI31 - 2.O(CZ1,31 -CZ11311. 41102000
21. ISAMMAiII1 - GAMMA21I)ODNIONZ/H 4110210
220 C(IZ.3):CE1R.3l 41102200
23* CE1391):CE1193) 110230
240 Ctf3t2=CEf1v3l 41 102400
25* 6AMMAE32)=SAMMAEI1I 41102500
26* RETURN "0102600
2?0 ENO '41102700

ENO OF COMPILATION: NO DIAGNOSTICS.

767



1* SUBROUTINE MIXCC N KCODl

2* C CALCULATE COMPOSITE Cl! AND C12 SEPARATELY IIXC002
3* REAL Nit K16,71, ME "NCG03
5*o DIMENSION X46) qCv
So COMNON/ELAST/Nl, C11121, C1212) "11COOS

60 COMMONIMIXI/C113,31, C243,31, GAMMAII31, GAMMAZI31 3ET41131, 14XCOOS
I* BESTA2131 "XCO
so CORMONIMIXZ/CE(39319 6AMNAEg3i, ME "llCOOl

9*CO""ON/COEF/K NX COO,
CllI):CRI1.1) "XCDlO

11*C1l421=C?411 MviCO 1
12* C12Ill=Clql,21 IC012
13* Cl212i)C211,?) "llCOI3
15* Xp4NI*LE.0D NI=l.E-OS
is* CALL SETUPOII
16* CALL 11O716911 Nx ccIs
17* SUM:X41) * X121 * X431 * 11141 NxCaO
Is* ETA=CIIZ/C1IO21 MX COI1
Igo H=XIlI - .5*43. 4 ETAJ*Xf2I/ETA *S.541. ETAI*X13) NOI) NXItSl

200 SUM=SUN/3. - 2.eH/3.
210 Y1=181SUM
22* IFIN1OLE9O) MI=l.E-05
230 CALL SETUPt?)

2(4* CALL ROOT16,Xf
25* SXSRO=Cl11.?*IXIII * 3..XfI X1M31 - 30*XISD) - C1212)
26* C66 *50OCIIIZ) - C121211

270SI6RTOZCS&41-X~j - 1.5043. *ETA)*x42!/ETA *.5011. - ETAPOX131
28* - 3@*X45) - 1.
29s Y2:SIGRO/3. - .*SXGRTO/3.
300 Y:.So411 0 Y21
31* CCll:.*4v NE MC;NICD?21
32* CEIZ,21:.*4xlE -I v X C022
330 CE1Z22:CEIl,l) XCD

35*CE12,l):CEI1,21 PlxC024
35* RETURN MX CO25
35* ENO NX C0261

E3 OF COMPILATION: NO DIA6NOSTICS.
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Is SUBROUTINE PRUFCIJoCINI
24 REAL NUXY4219 RUXZ121, NUZX121, NI PRUOO*10O
3* REAL NUTT,NUTA,NUITT,NUTAF,tIUTTNNUTAN
41* REAL NUCKYCNUCXZC,NUCZXC
So REAL KX121, MZ42J, MXE, MzEt ME PRUG0600
6* DIMENSION CIN18,31
7* DIMENSION BETAE(31, EXIZI, EZ121, RHO4Z3, 6423
as CO~ftON/NIXI/C1(39319 C2439319 GAMMA143I, 6APIM42131, 3ETA14319 PRUG1200
9s 0 BETA2131 PRU01 300

I0O COMPION/mIX2/CE139319 SANNAE13), ME PRUoRMOO
Il COMMON/ELAST/NIvC1112)v C12421 PRUDISH150
12* COMMONISOUT/SI3931 PRUOR1600
130 COMNON/INPUT/VFRACE3I,AN6LCI3J,E74t3,EA3,'iUIT13I,NJTAI3I,6A(33,

140 *ALFT13I ,ALFAI31,ETF131,EAfI3INUTTF43I,NUTAFI3I,6AF13ALFTFI3I,
15* *ALFAP13l9Vft3),ETH1319EA"431,MUTTI319NUTA"(3196A431 ,ALF114431,
160 oALFAM4319VMI31
17* EXIII:ETFgJI
I&* EZIll:(AVEJI
19* NUXYlI1)NUTTFlJ)
zoo NUXZI13:NUTArIJI
210 BETAttlIZALFTFIJI
22* BETA1431=ALFAF(J)

210 PZ141131

26* 6t1)=6AFUJI
270 EXj2a:ETMIJl
260 EZIZ,:CEAMIJ)
290 NUXTI21=NUTTMIJ)

300 NUXZ12J:NUT&MIJ)
31* 9CTA21I)=ALFTNIJ)
32* BETA2131ZALFAMIJ)
330 giX(21=1.

34* KZ4211

360 6421=6AMIJ)
370 C CALCULATE CSUB!JOS FOR FIBER PRU03400
360 NUZXI1:(EX11)NUXZlI i/EZld3 PRU03SOO
390 DCLTA:1. - MUXYI11042 - *OMUX1211*NUZXIII 2*Z*NJxEWII*NUMZII PRU03600

43 OMUZR(II PR U037D0
410 C111.13:Ehtll- - NUXZI1J*NUZXE1II/DELTA PRU03803
420 CIv23:Cxh13I)*NUXvI3 4 NUMI)NUXI)JIOELTA PRU03900
*3* C111,33:CXI)*fl.* NUXTI1,,*NUXZII/OELTA PRUO*000

of*Cl
1 393l:EZf13*fI- mUXV(11*021/OELTA PRUG4100

450 Ci1291)=CII1.2I PRI'O0 200
*6*C112921=C111 ,ll PRUO*303
*7*C112,3)=ClIl,31 PRUG**00

460 C11391)=ClII,31 PRUO*500
%9* C11392):C161,3l PRU04600
So* C CALCULATE CSUB!JOS FOR MATRIX P~%O
514 ?UZXf23:IEXI Z)*NUXZ12J)/EZIZ 3 PRU04803
52* DELTA=). - NUXY121CC? - Z.*WUXZ42)*NUZX42) - .*NJXYI21*w&JXZ121 PRUG49O0
53* * NUZX(21 PRUOSO00

Sol* C211913:EX42,*I11 - NUKzIZ)*NUZX1211/OELTA PRUO5O
SSS C2(1923:EM(2104NUXY423 4 MUXZIZ3*NUZXIZ)3/OELTA PRUDS200
5*CIi,33:EX12)*101* NUXYEZll*NUXZ42)/OELTA PRuOS300
5*C213v3)=EZf2)*4I. -NUXV1210*21/OELTA PRUO500g
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ses C212,1)=C241921 PRUOS5500
590 C2#2921=C2#1,11 PRUD5600
60* C~g2v3v=C2I1,iI PRUOS700
61' C213913:C211,33 PRUOSDOO
62* C2(3921:C211931 POU05900
63* C CALCULATE THERMAL STRESS COEFFS PR UO7900
640 SETAIZI:SETAIIL) PRUDOO
65* IETAZZ:SBrA2f11 PRUOs 100
660 00 30 1=193 PRUO82OQ
670 SAmMAIIIO* PRU~G300
660 00 30 jj=193
690 30 6ANMAJII:IGAMMA1IIII # CIZJjilSETA1IJJ)
710 00 40 1:1,3
It* 6AMMA2111:Oe PRUOI7?DO
72' 00 4O jj=1,3
73' 40 6AMHA21II:GAPRA2111 ' C21lojj).ETAZ1 JJi

7 C CALCULATE ELASTIC AND THERMAL STRESS COEFFS FOR COMPOSITE AS PRU09200
?so C FUNCTION OF FIBER VOLUME FRACTION, CUI * C12, C13, C339 GAMMAR, PRUG93013
?60 C GAMMA3 PR U09400
?' NRZVFIJI
780 CALL MIX PRU09600
790 C CALCULATE THERMAL EXPANSION COEFFS FOR COMPOSITE PRUO9900
so* *ETAEI~I)=e*I6AMMAEfIi*CEI3,3) - 6AMMAE1310CEIZ,3111fS.SKsE PRUROOO
$I* * *CE13,31 - CE119310021 PRU100O
82' BETAE13)=toS*KE$GAMMIAEI31 - CE(Iv3).GAMMAEig1R,,4.5'£r PRU10200
530 * CE3931 - CECR,3)**21 PRUID300
04. SCTAE121=BETAECRI PRUIOAGOO
as* SAVEX=SETAEtRS
sb* SAvEZ=8IAE131
37* CINI79JI=6AMMAESI)

ess CIMISJi:GAMMAt13)
890 C THERM CONO FOR COMPOSITE PRUL07CIO
90' NZEZNR*KZIZI # It, - NjI)KZI2I pRUIDBOD
910 Q=SKX121 - MXXIII/IKXq1I # E(XI21 0 NRIIX421 - KX4IDID PRUIO900
92' KXE=N1*NXIII.S1. * 41. -N11*0i # It* - Mli*4Xl21*S1. - 41*01 PRUIIO0O
930 C COMPOSITE DENSITY PRU1RROO

90RHOC=NR.RHOI3I * (I - NI)ORMOIZI POU11200
95* C COMPUTE ClI AND C12 FOR COMPOSITE PRU11O00
960 CALL MIXCC PRU11SOO
970 CALL INVERT FRU11600
93. CRNI1,.JI:CEI1l
990 CINE?,.J)=CEIR,21

1000 CINi3#Ji:CEI33

102S C COMPOSITE IMPLANE SHEAR MODULUS PRUL2200
103#CINSSJ)=6I2)*I2.$N1'6S1) * 41. - NI)$IGIIJ * 52)))IZ..t41*GtZJ

1040 # 11. - N311*16413 612131
I0S* CIN46,.jl=.S.(CEII,ll CEI1
106* C CALCULATE COMPOSITE ENGINEERING MODULI AND SAVE F3R *9ItETING PRU12600
1070 ECXC=1./S1IqI
103* ECZC=R.I13,31
1090 NUCXYCZ - SII,21eCCXC
1100 NUCXZC= - SI1,31*ECZC
III* NUCZYC=HUCNZC*ECXC/ECZC
1120 CALL. SIRESSSSIGZ1,SIGZ2,516RSIGH1I ,SIGHZI ,SIGHZSaUf-E,SAVCZI
113S WRITE16,1031
1140 WRITClb,1001 J
115* 13C FORMATI19* PROPERTIES OF PLY,12Z,* AS CALCU6ATE3 4114 04UFCOI
116' WRITE169101i ECXCECZCoNUCXYCtNUCXZC
1170 101 FORMATS Li ,SX,'ET:',E11.SSX,'EA:',E11.5SvX,"4uTT:' ,rS.5,.WPUTA=
1ts* *,9FS.So
119' WRITE16,1021 CINHSJI ,CINS6,JI,3CTAE11ISET4EI31
1200 132 FORMAT'I is. SX,6AT=',C11.SSx,'6TT=:%E1.5,5x,'kLFT=.,E11.5,Sx,'AL
121* oFA=',C11.S)
122* 103 FORMATS1/
123* RETURN
LZF4' ENDa PR U2 Z A

EN3 OF COMPILATIONt NO DIAGNOSTICS*
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1.SUBROUTINE IOOTIN,XOUTI 10000100
20 C SOLvES N LINEAR SIMULTANEOUS EOUATIONS9 N.LE.6 UNL!SS 10000200

30 C DIMENSIONS ARE CHANGED R0000300
I*IMPLICIT DOUBLE PRECISIONIA-N.0-Zi 9O00000
5*REAL XOUT16I XXN1b,7) 10000500
1*DIMENSION X1619 XK16,71 10000600

7* CONmON/CoEF/XMIN R0000700
soNPI=N V 1 OOO0gOO

90 NM3:N -1 R0000900
10. "1=0 10001000
It* 00 10 I:1,N 10001100
120 DO 10 J:1,NPI R0001200
130 10 lguIIJ1:XNINfIqJ) 0.0001300
140 20 NI=NI # I 900011.00
15* IF1NIsGT*NMII G0 T0 80 90001500
16* NIP1I * 41 0001600
170 A:EKuNINII 00001700
Is* IM:NI Rooolsoo
19* DO 30 I=NIP1,N R0001900
20* IFEDABS1XK(IINI)I.LEeDASIA3 60 TO 30 10002000
21* A=XKII.Nll 90002100
22# 1N1Z R0002203
230 30 CONTINUE R0002300

2%0 IFIIP*LEeri) 60 TO 50 R00024.00
25* 00 1.0 J:NIONP1 10002500O
26* A:XKIIM.JI 10002600
270 XKfIPqJ):XA1IqJ) R0002700
2s0 1.0 XKINIgJI:A 00002800
290 50 CONTINUE 10002900
30s A=XKINI,NIl *0003003
31* 00 60 J:NIONP1 R0003100
32. 60 XK(NI,j)=XMINI,j3/A 10003200
330 00 T0 I:NIPLN R0003300
316* 00 70 J:NIP1.NP1 R00034.00
35* 70 XMEIqJ1:X~fIqNI)*XfNI,J1 XK4IJ) R0003503
36s 60 TO 20 00003600
37* So CONTINUE R0003700
380 X1N1IXKI NqNPI1/XXNqN) 10003800

30NX=N 10003900
4.00 go NX=NX - 1 00004003
1.1* NXP1:NX # 1 R1001.0
1.2* IF(NX.LT.11 60 TO 110 R0001.200
1.3* 11N13:ZK(NENP1D 9O001300
440. 00 100 9=NNXPRN 9O001..0
41.5 lo w(NX):EINK3 - XKINxMI*xfNI 1O001530
4.60 X4qNjX):ENK /XK INX,NE) 90001.600
1.7* 60 TO 90 10001.700
1.8* 110 CONTINUE R0001.600
1.9* 00 120 I1,9 10001.900
so* 120 WOUT(I1=X1II 10005003
51* RETURN 90005100
520 END R0005200

M3 OF COMPILATION: NO DIAGNOSTICS.
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10 SUBROUTINE SEIUPIN)
20 c SETS UP MATRIX OF COEFFS USED BY SUBROUTINE MIXCC TO 051*1W SE100200

30 C C11 ANO C12 Sc 100300

4* #?EAL Nl, 916,71 SE 700*00

So DIMENSION EIA121, C6612) SE 100500
60 CONWON/ELAST/NIq CIII?', C12121 Sc yOO632
To COM140MICOEFIN SE 100700
so IFIN.EQ,21 60 TO 10
9* RI=SORTINII SE7100800

100 012=R0*0 SE 100900

110 R14=0120*2 SETOI0OD

120 Rl=R2003 5(101100

130 ETAlI=C121111C11111 SCID1202
14* ET~l4l=C1212)/Cl1f2) SET01300

is* Cb6tl.3.501C11111 - C121111 SET01400

110 C1112):.501C111?J - 12f2) 5E101500

170 KI1,131R* SE701600

Is* KfIIZlRII S 10 790

190 Kil,33112 SE10160O1
200 N11941=1. SET01900

210 Wi1,s)I-R14 SET02000

220 N419l)=-RlI SE 102 100
230 9IR,71roo SET02200

21* KI2,11=-(1AlIl*ETA12)*R1* SE 102300

25S K42,21=-eS4ETA1I)*13o. 0 ETAI2)J.RlG SET02400

21. K12,31=-.S$ETAll)*CTAf2)0ilo - ETA1211R12 SE102soo
270 KI?,.I:ETAIlI*ETAIZl SE 102100

280 KI2,SI:C~Ihf sETA12)*R1* SE 102700

290 K12,lI:.5*ETA12)*f3o * CTAIlI)OR16 SE 102300

300 9(2971=00 SET02900

310 K13,11=01*OICI11IZ - C12I211 SE103000

320 943,21=O. SE103100

330 K13q3)=.R1 2*1C1112) - ETAIZIsCI1211) SE103200

340 K43,*I:-3.sIC1Ii2) - C12121) SE103300

360 R43,61=00 SE 103500

310 K13,11=0. $E1703600

360 1 *,1i=-.0(TAIIIOTA I2bO01i*OCI.12 SEIO3700

390 NI*,2):-C6642I0R110CTAI1103.0I1o 4 ETAM)3 5E103600

ISO* w*,33:-C1141OETAII0EIAI2IO(l. * EVA1211*412 SE1039go

a,10 KI*,*)=.,.0C6612V0CTAI1 30(1*62) 1E104000

lr2* ui*,91Z.o*CIIIRIOETAI I0CETAIZIOEZ* sEIo*100

430 KI*,e3:3.*C6I1I10ETA121*f1. # E1AI1330R6 SE 10*2013

4*0 K 4,71=0. ST40

f*50 N15,R3:CI1I?1 - C12I21 SET104430

le NIS2=0. SET04SOO

*70 91S,31=-CS362) * ETA(11C12121 S(10*600

%so K5a)=-3o01C1112) - C12(21) SE104100

:190 K4500 SETO*500

so* K45,61=0. SE1O*900

520 KlI,l-2*sETAf2lsCbbl2I 5(105100

530 NII,2)=-3#sCIII2)$4l. # ErA4211 S(105200

540 NIIG,j)=-C6&I2IOET*12)*13.* 0 EA1?)) SE105300

550 K I6,%)1 i*0(TAI 2 )0Cb912) sE 105*00

510 KII,550.o S1 705500

57o K16,61=0. SE105600

560 Kifi,?)=-EIA421 SETOS 700
590 RETURN
bas 10 CONTINUE
130 E1A12)=C3212)/CI1ZI
620 mis,1I1.l
63' K(S,ZlI1.

670 xIS,91O.e

690 11591= 1*1

700 g46,23: - S5013. *ETA(Zll
It* mlb,31= - *50(l. -ETA12110ETA121

720 K16941=ETA121
730 946,51=0,
740 N6961=0.
?so K16972 - E1*423

710 RETURN SE10560

77. END scl10590
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1* SUBROUTINE STRESSISIGZ1 ,SI6Z2,SI6o~6lS lg SliH21.Sl;42Z*gCVAx, S1ROO102
20 0 BETAZI ST P00200
30 C CALCULATES INTERIOR FIER AND "ATRIX STRESSES /STROD3013

40 EAL "I1 STROOOO
So COMMON/391XI/Clq3933. CZ13,31, SAM34AII33. 6A4MA21319 3ETAZIS). STRODSOO

** 0 BTA2I3) STROD60O
70 CORMON/ELAST/N, C11(21, C1212) STROOTOD

so A2=C211933*BETAZ # IC211913 * C241921108ETAX - 6ARMA21111/ STROUOO
go 0 fNls29.C211,111 STROO900

100 62=SETAX - A2*klSTOID
11* el1AZ * 82 STRO1L 0012* SIGZL=Z*.Cltlo3l.sl 0 C1139310BETAZ - 6AmmA113) STRO1200
13* SIGZ2=Z..C211*31062 * C2l3 v3 l*BET&Z - 6APORA2131 STRO130 3140 slGR:ICCII,1l * CIII,21081 * CI(1*3,.mcTAZ - 644411STRO1400
ISO S16411:SIGR STRSOQ
16e S16GHZI21.23.4-A? * 821 * CZII.1)*fA2 * 823 0 C2119310SETAZ ST001633
170 - GAMNA2IRI STROZTDO
1s. SIGN22=CZIR,23.l-A2.N1 * 62) * C211I3eA2e'41 * 623 & C2411 STRO1600
19* *9*ETAZ - GAMI4A2111 STRO1,00

20RETURN STR020C0o
21* ENO SIRO2100

I OF COM4PILATION: NO DIAGNOSTICS*
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Is SUBROUTINE THERMLIALF#SZSOOTI
20 DIMENSION X46), ALF(41, SIGOOT(',,31
3. REAL N1, N2, W3, K

If* COMMONtONE/MR. N2, N3

bo COMMONtCOEFtKI6,?)
To CON"ONREEtGAM9AIINI, GAMMaZII, GAMMA3I~l
so 94R111C111,11

go K11,2):0*
300 K#19131=0.
It* 9I,NI:jCRER.?3
12* 911,51=CI1131
130* MI 1,o1:z..CZ. :.4

lf4*KII,71=6AMMA1I II
150 .112,13:0.
16# NIl2s2I:C241vIJ
17* 9(2,31=0.
is* N129,*3C211,21
190 91295)=CZf1 1 31
230 X12#6J=2..C~t1,s,
210 191*AM21
220 K(3911=00
230 913921=0,
214' M1393)=C311,11
250 0((3,41=C3(1,21
26* K1395)=C34191,
27o MI 3,61=2o.C34 194)
26* 943,71=6AMMA3(3)
290 KI'.,1):Nl*Cll1,21
30* .1l.,?3:N24C211921
31* MI*l,3)=N3$C36192)
32* MI'.,*1:41*C11Z22 * N20CZ42,21 * m3*C3(2,Zl
33s MI'.,5):N1*CiIZ,31 # N20C212931 0 N3*C3f2*3l

34* K149S1:2.04N1*CIIZ,'l # N20C242941 * N3*C3(2,'.lI
35* ml'.,7):N1*AMNA1121 # N2*6AMP!A2(21 # M30GAMPA3121

36* K15911=Nl$CXII,31
37s M1159213N20C241931
*6 4, Ki5,3):N3*C3tlv3!
39* NIS,)=Nl*Clt293) * NZ*C212,3) * N3*C3(Z,31
*0* xiS.5):Nl*ClI3,3l 0 N?*C213931 * N3*C3(3,31

III* NIS,,l:Z..1IRC113,*) * mZOC213.*) * 43*C3139411
1620 .15,?3:Nj$6ArnqAj(3) * 1420GANMA2131 0 N306Aii4ASlI
43* mI1iN1*~lCSll,*

440 K1SZ3:N2*C211,*I
45* K16s3):143*C341v1,
460 01G94,,lCIIZ2ie) 4 N2$C212v,*3 NSOC312'41
47* 9l66,5)=Nl$C13'1 # N2*C2t394l * N3*C3(3941
48* M16961=2.0qNIOCII*,41 + N2*CZ14941 #*3C1,1
490 x4697):Nl.GAMAll%) # N2*6AMMA2141 # N3*GAN*A31%)
50* CALL A00T46,X)
51* EPSX=MI.K611 4 N?*X121 * 430K131
52* SA.7(1):EPSX
530 ALFI21=xl*3
51* ALF131=XIS)
55* ALFpI*3M41
56* S16OOTIlt1l:ClI1,1,*Xfll * CZ,1,23*X'.3 # CIII,310XIS)
57o . 2*Z*C1I1,*1*X(6) - GAMMA141)

56* 5IGDOTI2v1,:Cl(1,23*N113 # C112921*X141 # C112,31*Ki5)
590 # 2s0C112.'.3.116l - 6AMMA1I 1

60* SIGOOTf3,11=C1(1,31.Ml3 # C1I2*31*X(4) * C113931*94SI
61* # 2.sC113,ahl*X(6J - GAMMA113

620 S160011*,113Cl11,4)sXI1) # C11?,410XIII 4 Cl,3,%elKI)
63* . 2.*C1I*,4*xt61 - GAMMA11%)

bit* SIGOOTf1,2)=CZII,13*xf2) * C211,2l*Xfftl 4 C2(193101(5)
65* * e*C2t1,*l*XI61 GAMRA241
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6. SIG00TI2,ZI:CZfI.2)*W1Z) + C29223X141 * CZ2o3l$EISl
67* 4 2.*C242941*XI61 - GAM"AZI?)
age SZGDOTI3,ZI:C(I.3)$Xf21 # C?(293).XI41 # C243,3109451
69* * 2e$C213v4)*Xl1 - GAHNAZ431

700 S3GgOT6~w2):C21I94).Xl23 # CZI?,e3*XtII + C243,41SX65)
?10 * ZC24%,ill$Xf6l - GAMMAZ6%)

720 SXGDOrlII31:C3t11I.*X13) * C3j,2)#XI,) # C311#3)*X65)

?3* 4 2s#C3fr1,*Xf63 - GAMMA3111
7140SXGOOT(2q3?:C3(1,2f*Xf3) # C312,ZJOXI'eI 0 C312t3j#xus,

?So * 2..C31ZI.)*XlbI - GAMMqA3I?)
7b* SIGDOTo3,3i=C31I,31*K(3l # C3(2,31*X(i.D 0 C3(393109(51

7?o * 2.*C31394l*Xf6) - GAMMA3(3)
76* S16DO1%9 3J=C311,d.J*Xf3) # C36?,UI*xiI # C313,e)*E151
790 * 2&*C3l%,I.).~t&l - GAMMA3(4)

MD* RETURN
810 END

END OF COMPILATION: MO DIAGNOSTICS,
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